{"title":"保护私有信息的结构化云审计","authors":"Hongda Xiao, B. Ford, J. Feigenbaum","doi":"10.1145/2517488.2517493","DOIUrl":null,"url":null,"abstract":"As organizations and individuals have begun to rely more and more heavily on cloud-service providers for critical tasks, cloud-service reliability has become a top priority. It is natural for cloud-service providers to use redundancy to achieve reliability. For example, a provider may replicate critical state in two data centers. If the two data centers use the same power supply, however, then a power outage will cause them to fail simultaneously; replication per se does not, therefore, enable the cloud-service provider to make strong reliability guarantees to its users. Zhai et al.[socc-submission] present a system, which they refer to as a structural-reliability auditor (SRA), that uncovers common dependencies in seemingly disjoint cloud-in\\-fra\\-struc\\-tu\\-ral components (such as the power supply in the example above) and quantifies the risks that they pose. In this paper, we focus on the need for structural-reliability auditing to be done in a privacy-preserving manner. We present a privacy-preserving structural-reliability auditor (P-SRA), discuss its privacy properties, and evaluate a prototype implementation built on the Sharemind SecreC platform[SecreC]. P-SRA is an interesting application of secure multi-party computation (SMPC), which has not often been used for graph problems. It can achieve acceptable running times even on large cloud structures by using a novel data-partitioning technique that may be useful in other applications of SMPC.","PeriodicalId":325036,"journal":{"name":"Proceedings of the 2013 ACM workshop on Cloud computing security workshop","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Structural cloud audits that protect private information\",\"authors\":\"Hongda Xiao, B. Ford, J. Feigenbaum\",\"doi\":\"10.1145/2517488.2517493\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As organizations and individuals have begun to rely more and more heavily on cloud-service providers for critical tasks, cloud-service reliability has become a top priority. It is natural for cloud-service providers to use redundancy to achieve reliability. For example, a provider may replicate critical state in two data centers. If the two data centers use the same power supply, however, then a power outage will cause them to fail simultaneously; replication per se does not, therefore, enable the cloud-service provider to make strong reliability guarantees to its users. Zhai et al.[socc-submission] present a system, which they refer to as a structural-reliability auditor (SRA), that uncovers common dependencies in seemingly disjoint cloud-in\\\\-fra\\\\-struc\\\\-tu\\\\-ral components (such as the power supply in the example above) and quantifies the risks that they pose. In this paper, we focus on the need for structural-reliability auditing to be done in a privacy-preserving manner. We present a privacy-preserving structural-reliability auditor (P-SRA), discuss its privacy properties, and evaluate a prototype implementation built on the Sharemind SecreC platform[SecreC]. P-SRA is an interesting application of secure multi-party computation (SMPC), which has not often been used for graph problems. It can achieve acceptable running times even on large cloud structures by using a novel data-partitioning technique that may be useful in other applications of SMPC.\",\"PeriodicalId\":325036,\"journal\":{\"name\":\"Proceedings of the 2013 ACM workshop on Cloud computing security workshop\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2013 ACM workshop on Cloud computing security workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2517488.2517493\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2013 ACM workshop on Cloud computing security workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2517488.2517493","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Structural cloud audits that protect private information
As organizations and individuals have begun to rely more and more heavily on cloud-service providers for critical tasks, cloud-service reliability has become a top priority. It is natural for cloud-service providers to use redundancy to achieve reliability. For example, a provider may replicate critical state in two data centers. If the two data centers use the same power supply, however, then a power outage will cause them to fail simultaneously; replication per se does not, therefore, enable the cloud-service provider to make strong reliability guarantees to its users. Zhai et al.[socc-submission] present a system, which they refer to as a structural-reliability auditor (SRA), that uncovers common dependencies in seemingly disjoint cloud-in\-fra\-struc\-tu\-ral components (such as the power supply in the example above) and quantifies the risks that they pose. In this paper, we focus on the need for structural-reliability auditing to be done in a privacy-preserving manner. We present a privacy-preserving structural-reliability auditor (P-SRA), discuss its privacy properties, and evaluate a prototype implementation built on the Sharemind SecreC platform[SecreC]. P-SRA is an interesting application of secure multi-party computation (SMPC), which has not often been used for graph problems. It can achieve acceptable running times even on large cloud structures by using a novel data-partitioning technique that may be useful in other applications of SMPC.