N. Manohar, S. Subrahmanya, R. Bharathi, Sharath Kumar Y. H, Hemantha Kumar G
{"title":"基于纹理特征的并行计算动物识别与分类","authors":"N. Manohar, S. Subrahmanya, R. Bharathi, Sharath Kumar Y. H, Hemantha Kumar G","doi":"10.1109/CCIP.2016.7802872","DOIUrl":null,"url":null,"abstract":"In this work, we proposed an efficient system for animal recognition and classification based on texture features which are obtained from the local appearance and texture of animals. The classification of animals are done by training and subsequently testing two different machine learning techniques, namely k-Nearest Neighbors (k-NN) and Support Vector Machines (SVM). Computer-assisted technique when applied through parallel computing makes the work efficient by reducing the time taken for the task of animal recognition and classification. Here we propose a parallel algorithm for the same. Experimentation is done for about 30 different classes of animals containing more than 3000 images. Among the different classifiers, k-Nearest Neighbor classifiers have achieved a better accuracy.","PeriodicalId":354589,"journal":{"name":"2016 Second International Conference on Cognitive Computing and Information Processing (CCIP)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Recognition and classification of animals based on texture features through parallel computing\",\"authors\":\"N. Manohar, S. Subrahmanya, R. Bharathi, Sharath Kumar Y. H, Hemantha Kumar G\",\"doi\":\"10.1109/CCIP.2016.7802872\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we proposed an efficient system for animal recognition and classification based on texture features which are obtained from the local appearance and texture of animals. The classification of animals are done by training and subsequently testing two different machine learning techniques, namely k-Nearest Neighbors (k-NN) and Support Vector Machines (SVM). Computer-assisted technique when applied through parallel computing makes the work efficient by reducing the time taken for the task of animal recognition and classification. Here we propose a parallel algorithm for the same. Experimentation is done for about 30 different classes of animals containing more than 3000 images. Among the different classifiers, k-Nearest Neighbor classifiers have achieved a better accuracy.\",\"PeriodicalId\":354589,\"journal\":{\"name\":\"2016 Second International Conference on Cognitive Computing and Information Processing (CCIP)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 Second International Conference on Cognitive Computing and Information Processing (CCIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCIP.2016.7802872\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Second International Conference on Cognitive Computing and Information Processing (CCIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCIP.2016.7802872","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Recognition and classification of animals based on texture features through parallel computing
In this work, we proposed an efficient system for animal recognition and classification based on texture features which are obtained from the local appearance and texture of animals. The classification of animals are done by training and subsequently testing two different machine learning techniques, namely k-Nearest Neighbors (k-NN) and Support Vector Machines (SVM). Computer-assisted technique when applied through parallel computing makes the work efficient by reducing the time taken for the task of animal recognition and classification. Here we propose a parallel algorithm for the same. Experimentation is done for about 30 different classes of animals containing more than 3000 images. Among the different classifiers, k-Nearest Neighbor classifiers have achieved a better accuracy.