时空先验下的车辆再识别

Chih-Wei Wu, Chih-Ting Liu, Cheng-En Chiang, Wei-Chih Tu, Shao-Yi Chien
{"title":"时空先验下的车辆再识别","authors":"Chih-Wei Wu, Chih-Ting Liu, Cheng-En Chiang, Wei-Chih Tu, Shao-Yi Chien","doi":"10.1109/CVPRW.2018.00024","DOIUrl":null,"url":null,"abstract":"Vehicle re-identification (Re-ID) is fundamentally challenging due to the difficulties in data labeling, visual domain mismatch between datasets and diverse appearance of the same vehicle. We propose the adaptive feature learning technique based on the space-time prior to address these issues. The idea is demonstrated effectively in both the human Re-ID and the vehicle Re-ID tasks. We train a vehicle feature extractor in a multi-task learning manner on three existing vehicle datasets and fine-tune the feature extractor with the adaptive feature learning technique on the target domain. We then develop a vehicle Re-ID system based on the learned vehicle feature extractor. Finally, our meticulous system design leads to the second place in the 2018 NVIDIA AI City Challenge Track 3.","PeriodicalId":150600,"journal":{"name":"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","volume":"136 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":"{\"title\":\"Vehicle Re-identification with the Space-Time Prior\",\"authors\":\"Chih-Wei Wu, Chih-Ting Liu, Cheng-En Chiang, Wei-Chih Tu, Shao-Yi Chien\",\"doi\":\"10.1109/CVPRW.2018.00024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Vehicle re-identification (Re-ID) is fundamentally challenging due to the difficulties in data labeling, visual domain mismatch between datasets and diverse appearance of the same vehicle. We propose the adaptive feature learning technique based on the space-time prior to address these issues. The idea is demonstrated effectively in both the human Re-ID and the vehicle Re-ID tasks. We train a vehicle feature extractor in a multi-task learning manner on three existing vehicle datasets and fine-tune the feature extractor with the adaptive feature learning technique on the target domain. We then develop a vehicle Re-ID system based on the learned vehicle feature extractor. Finally, our meticulous system design leads to the second place in the 2018 NVIDIA AI City Challenge Track 3.\",\"PeriodicalId\":150600,\"journal\":{\"name\":\"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)\",\"volume\":\"136 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"38\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPRW.2018.00024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW.2018.00024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 38

摘要

由于数据标记困难、数据集之间的视觉域不匹配以及同一车辆的不同外观,车辆再识别(Re-ID)从根本上具有挑战性。为了解决这些问题,我们提出了基于时空先验的自适应特征学习技术。该思想在人的重新识别和车辆的重新识别任务中得到了有效的证明。我们以多任务学习的方式在三个现有的车辆数据集上训练了一个车辆特征提取器,并在目标域上使用自适应特征学习技术对特征提取器进行微调。然后,我们基于学习到的车辆特征提取器开发了车辆重新识别系统。最后,我们细致的系统设计让我们获得了2018年NVIDIA AI城市挑战赛第三赛道的第二名。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Vehicle Re-identification with the Space-Time Prior
Vehicle re-identification (Re-ID) is fundamentally challenging due to the difficulties in data labeling, visual domain mismatch between datasets and diverse appearance of the same vehicle. We propose the adaptive feature learning technique based on the space-time prior to address these issues. The idea is demonstrated effectively in both the human Re-ID and the vehicle Re-ID tasks. We train a vehicle feature extractor in a multi-task learning manner on three existing vehicle datasets and fine-tune the feature extractor with the adaptive feature learning technique on the target domain. We then develop a vehicle Re-ID system based on the learned vehicle feature extractor. Finally, our meticulous system design leads to the second place in the 2018 NVIDIA AI City Challenge Track 3.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信