{"title":"方差的n步滑动递推公式及其实现","authors":"Lang Yu, Gang He, Ahmad Khwaja Mutahir","doi":"10.3745/JIPS.04.0182","DOIUrl":null,"url":null,"abstract":"The degree of dispersion of a random variable can be described by the variance, which reflects the distance of the random variable from its mean. However, the time complexity of the traditional variance calculation algorithm is O(n), which results from full calculation of all samples. When the number of samples increases or on the occasion of high speed signal processing, algorithms with O(n) time complexity will cost huge amount of time and that may results in performance degradation of the whole system. A novel multi-step recursive algorithm for variance calculation of the time-varying data series with O(1) time complexity (constant time) is proposed in this paper. Numerical simulation and experiments of the algorithm is presented and the results demonstrate that the proposed multi-step recursive algorithm can effectively decrease computing time and hence significantly improve the variance calculation efficiency for time-varying data, which demonstrates the potential value for time-consumption data analysis or high speed signal processing.","PeriodicalId":415161,"journal":{"name":"J. Inf. Process. Syst.","volume":"152 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"N-Step Sliding Recursion Formula of Variance and Its Implementation\",\"authors\":\"Lang Yu, Gang He, Ahmad Khwaja Mutahir\",\"doi\":\"10.3745/JIPS.04.0182\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The degree of dispersion of a random variable can be described by the variance, which reflects the distance of the random variable from its mean. However, the time complexity of the traditional variance calculation algorithm is O(n), which results from full calculation of all samples. When the number of samples increases or on the occasion of high speed signal processing, algorithms with O(n) time complexity will cost huge amount of time and that may results in performance degradation of the whole system. A novel multi-step recursive algorithm for variance calculation of the time-varying data series with O(1) time complexity (constant time) is proposed in this paper. Numerical simulation and experiments of the algorithm is presented and the results demonstrate that the proposed multi-step recursive algorithm can effectively decrease computing time and hence significantly improve the variance calculation efficiency for time-varying data, which demonstrates the potential value for time-consumption data analysis or high speed signal processing.\",\"PeriodicalId\":415161,\"journal\":{\"name\":\"J. Inf. Process. Syst.\",\"volume\":\"152 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Inf. Process. Syst.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3745/JIPS.04.0182\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Inf. Process. Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3745/JIPS.04.0182","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
N-Step Sliding Recursion Formula of Variance and Its Implementation
The degree of dispersion of a random variable can be described by the variance, which reflects the distance of the random variable from its mean. However, the time complexity of the traditional variance calculation algorithm is O(n), which results from full calculation of all samples. When the number of samples increases or on the occasion of high speed signal processing, algorithms with O(n) time complexity will cost huge amount of time and that may results in performance degradation of the whole system. A novel multi-step recursive algorithm for variance calculation of the time-varying data series with O(1) time complexity (constant time) is proposed in this paper. Numerical simulation and experiments of the algorithm is presented and the results demonstrate that the proposed multi-step recursive algorithm can effectively decrease computing time and hence significantly improve the variance calculation efficiency for time-varying data, which demonstrates the potential value for time-consumption data analysis or high speed signal processing.