多频信号电介质结构的神经网络反演方法

O. Drobakhin, A. V. Doronin
{"title":"多频信号电介质结构的神经网络反演方法","authors":"O. Drobakhin, A. V. Doronin","doi":"10.1109/DIPED.2006.314284","DOIUrl":null,"url":null,"abstract":"Application of neural network ideology for layered dielectric structure inverse problem solution is under consideration. The 3-layered feed-forward with activation function as a sigmoid (S-shaped) was chosen. The real part of reflection coefficient at many frequencies is used as input signal. Levenberg-Marquardt algorithm was used for training of the network. Some results of numerical simulation for two-layered structure in presence of Gaussian additive noise are demonstrated","PeriodicalId":183082,"journal":{"name":"Proceedings of XIth International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic Acoustic Wave Theory","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neural Network Inverse Method for Dielectric Structures by Multifrequency Signals\",\"authors\":\"O. Drobakhin, A. V. Doronin\",\"doi\":\"10.1109/DIPED.2006.314284\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Application of neural network ideology for layered dielectric structure inverse problem solution is under consideration. The 3-layered feed-forward with activation function as a sigmoid (S-shaped) was chosen. The real part of reflection coefficient at many frequencies is used as input signal. Levenberg-Marquardt algorithm was used for training of the network. Some results of numerical simulation for two-layered structure in presence of Gaussian additive noise are demonstrated\",\"PeriodicalId\":183082,\"journal\":{\"name\":\"Proceedings of XIth International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic Acoustic Wave Theory\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of XIth International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic Acoustic Wave Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DIPED.2006.314284\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of XIth International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic Acoustic Wave Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DIPED.2006.314284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了神经网络思想在层状介质结构反问题求解中的应用。选择激活函数为s型的3层前馈。采用多频反射系数的实部作为输入信号。采用Levenberg-Marquardt算法对网络进行训练。给出了高斯加性噪声存在下双层结构的数值模拟结果
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neural Network Inverse Method for Dielectric Structures by Multifrequency Signals
Application of neural network ideology for layered dielectric structure inverse problem solution is under consideration. The 3-layered feed-forward with activation function as a sigmoid (S-shaped) was chosen. The real part of reflection coefficient at many frequencies is used as input signal. Levenberg-Marquardt algorithm was used for training of the network. Some results of numerical simulation for two-layered structure in presence of Gaussian additive noise are demonstrated
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信