{"title":"用超几何函数求二项式系数的和","authors":"M. B. Hayden, E. A. Lamagna","doi":"10.1145/32439.32454","DOIUrl":null,"url":null,"abstract":"An algorithm which finds the definite sum of many series involving binomial coefficients is presented. The method examines the ratio of two consecutive terms of the series in an attempt to express the sum as an ordinary hypergeometric function. A closed form for the infinite sum may be found by comparing the resulting function with known summation theorems. It may also be possible to identify ranges of the summation index for which summing to a finite upper limit is the same as summing to infinity.","PeriodicalId":314618,"journal":{"name":"Symposium on Symbolic and Algebraic Manipulation","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1986-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Summation of binomial coefficients using hypergeometric functions\",\"authors\":\"M. B. Hayden, E. A. Lamagna\",\"doi\":\"10.1145/32439.32454\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An algorithm which finds the definite sum of many series involving binomial coefficients is presented. The method examines the ratio of two consecutive terms of the series in an attempt to express the sum as an ordinary hypergeometric function. A closed form for the infinite sum may be found by comparing the resulting function with known summation theorems. It may also be possible to identify ranges of the summation index for which summing to a finite upper limit is the same as summing to infinity.\",\"PeriodicalId\":314618,\"journal\":{\"name\":\"Symposium on Symbolic and Algebraic Manipulation\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1986-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Symposium on Symbolic and Algebraic Manipulation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/32439.32454\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symposium on Symbolic and Algebraic Manipulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/32439.32454","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Summation of binomial coefficients using hypergeometric functions
An algorithm which finds the definite sum of many series involving binomial coefficients is presented. The method examines the ratio of two consecutive terms of the series in an attempt to express the sum as an ordinary hypergeometric function. A closed form for the infinite sum may be found by comparing the resulting function with known summation theorems. It may also be possible to identify ranges of the summation index for which summing to a finite upper limit is the same as summing to infinity.