Alperin-McKay猜想的Jordan分解

L. Ruhstorfer
{"title":"Alperin-McKay猜想的Jordan分解","authors":"L. Ruhstorfer","doi":"10.25926/PXEY-HD44","DOIUrl":null,"url":null,"abstract":"Sp\\\"ath showed that the Alperin-McKay conjecture in the representation theory of finite groups holds if the so-called inductive Alperin-McKay condition holds for all finite simple groups. In a previous article, we showed that the Bonnaf\\'e-Rouquier equivalence for blocks of finite groups of Lie type can be lifted to include automorphisms of groups of Lie type. We use our results to reduce the verification of the inductive condition for groups of Lie type to quasi-isolated blocks.","PeriodicalId":275006,"journal":{"name":"arXiv: Representation Theory","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Jordan Decomposition for the Alperin-McKay Conjecture\",\"authors\":\"L. Ruhstorfer\",\"doi\":\"10.25926/PXEY-HD44\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sp\\\\\\\"ath showed that the Alperin-McKay conjecture in the representation theory of finite groups holds if the so-called inductive Alperin-McKay condition holds for all finite simple groups. In a previous article, we showed that the Bonnaf\\\\'e-Rouquier equivalence for blocks of finite groups of Lie type can be lifted to include automorphisms of groups of Lie type. We use our results to reduce the verification of the inductive condition for groups of Lie type to quasi-isolated blocks.\",\"PeriodicalId\":275006,\"journal\":{\"name\":\"arXiv: Representation Theory\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Representation Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.25926/PXEY-HD44\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Representation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25926/PXEY-HD44","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

Sp\ ath证明,如果所谓的归纳Alperin-McKay条件对所有有限简单群都成立,则有限群表示理论中的Alperin-McKay猜想成立。在上一篇文章中,我们证明了li型有限群块的Bonnaf 'e-Rouquier等价可以提升到包含Lie型群的自同构。我们利用我们的结果将李型群的归纳条件的验证化约为拟孤立块。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Jordan Decomposition for the Alperin-McKay Conjecture
Sp\"ath showed that the Alperin-McKay conjecture in the representation theory of finite groups holds if the so-called inductive Alperin-McKay condition holds for all finite simple groups. In a previous article, we showed that the Bonnaf\'e-Rouquier equivalence for blocks of finite groups of Lie type can be lifted to include automorphisms of groups of Lie type. We use our results to reduce the verification of the inductive condition for groups of Lie type to quasi-isolated blocks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信