Junlei Song, Yanxia Huang, Zhiheng Yang, MeiJuan Chen, Yong Yang, W. Mo, K. Dong, F. Jin
{"title":"基于PMN-PT的压电检波器磁芯仿真与实验研究","authors":"Junlei Song, Yanxia Huang, Zhiheng Yang, MeiJuan Chen, Yong Yang, W. Mo, K. Dong, F. Jin","doi":"10.23919/CHICC.2018.8483818","DOIUrl":null,"url":null,"abstract":"Piezoelectric geophones are vibration detectors that convert vibration acceleration signals into electrical signals. High performance piezoelectric materials can improve the sensitivity of piezoelectric geophone and meet the need of high-resolution seismic data acquisition. The comprehensive performance of relaxor piezoelectric single crystal PMN-PT is more superior than PZT, and it is potential to be applied to high sensitivity and small volume geophones. In this paper, the central compressed geophone core model based on PMN-PT was established and theoretically analyzed. Then, a multiphysics simulation model was set up in COMSOL for simulation calculation. Finally, experimental verification was carried out. The results show that using PMN-PT in geophone core design can improve the sensitivity of the model by more than 120% compared with the traditional PZT material. The PMN-PT has the potential to be applied to high sensitivity and small volume geophones.","PeriodicalId":158442,"journal":{"name":"2018 37th Chinese Control Conference (CCC)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulation and Experimental Study on Piezoelectric Geophone Core Based on PMN-PT\",\"authors\":\"Junlei Song, Yanxia Huang, Zhiheng Yang, MeiJuan Chen, Yong Yang, W. Mo, K. Dong, F. Jin\",\"doi\":\"10.23919/CHICC.2018.8483818\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Piezoelectric geophones are vibration detectors that convert vibration acceleration signals into electrical signals. High performance piezoelectric materials can improve the sensitivity of piezoelectric geophone and meet the need of high-resolution seismic data acquisition. The comprehensive performance of relaxor piezoelectric single crystal PMN-PT is more superior than PZT, and it is potential to be applied to high sensitivity and small volume geophones. In this paper, the central compressed geophone core model based on PMN-PT was established and theoretically analyzed. Then, a multiphysics simulation model was set up in COMSOL for simulation calculation. Finally, experimental verification was carried out. The results show that using PMN-PT in geophone core design can improve the sensitivity of the model by more than 120% compared with the traditional PZT material. The PMN-PT has the potential to be applied to high sensitivity and small volume geophones.\",\"PeriodicalId\":158442,\"journal\":{\"name\":\"2018 37th Chinese Control Conference (CCC)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 37th Chinese Control Conference (CCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/CHICC.2018.8483818\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 37th Chinese Control Conference (CCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/CHICC.2018.8483818","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Simulation and Experimental Study on Piezoelectric Geophone Core Based on PMN-PT
Piezoelectric geophones are vibration detectors that convert vibration acceleration signals into electrical signals. High performance piezoelectric materials can improve the sensitivity of piezoelectric geophone and meet the need of high-resolution seismic data acquisition. The comprehensive performance of relaxor piezoelectric single crystal PMN-PT is more superior than PZT, and it is potential to be applied to high sensitivity and small volume geophones. In this paper, the central compressed geophone core model based on PMN-PT was established and theoretically analyzed. Then, a multiphysics simulation model was set up in COMSOL for simulation calculation. Finally, experimental verification was carried out. The results show that using PMN-PT in geophone core design can improve the sensitivity of the model by more than 120% compared with the traditional PZT material. The PMN-PT has the potential to be applied to high sensitivity and small volume geophones.