基于样本一致性的序列评价特征匹配

Chao-xia Shi, Yanqing Wang, Li He
{"title":"基于样本一致性的序列评价特征匹配","authors":"Chao-xia Shi, Yanqing Wang, Li He","doi":"10.1109/SPAC.2017.8304294","DOIUrl":null,"url":null,"abstract":"Consensus evaluation is one of the key issues in vision based feature matching. To improve both efficiency and accuracy of local feature matching, we proposed a Sequential Evaluation on Sample Consensus (SESAC). The addressed approach first sorts the matching pairs in terms of the similarity of the corresponding features, then it sequentially selects the samples, and uses the least squares method to fit the model, by which to reject the outlier points and update the optimal solution. The experimental results demonstrate that compared with the classic PROSAC and RANSAC algorithm, SESAC algorithm can achieve similar accuracy, whereas reduce the running time greatly.","PeriodicalId":161647,"journal":{"name":"2017 International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Feature matching using sequential evaluation on sample consensus\",\"authors\":\"Chao-xia Shi, Yanqing Wang, Li He\",\"doi\":\"10.1109/SPAC.2017.8304294\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Consensus evaluation is one of the key issues in vision based feature matching. To improve both efficiency and accuracy of local feature matching, we proposed a Sequential Evaluation on Sample Consensus (SESAC). The addressed approach first sorts the matching pairs in terms of the similarity of the corresponding features, then it sequentially selects the samples, and uses the least squares method to fit the model, by which to reject the outlier points and update the optimal solution. The experimental results demonstrate that compared with the classic PROSAC and RANSAC algorithm, SESAC algorithm can achieve similar accuracy, whereas reduce the running time greatly.\",\"PeriodicalId\":161647,\"journal\":{\"name\":\"2017 International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPAC.2017.8304294\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPAC.2017.8304294","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

共识评价是基于视觉的特征匹配的关键问题之一。为了提高局部特征匹配的效率和准确性,我们提出了一种基于样本一致性的序列评估方法(SESAC)。该方法首先根据特征的相似度对匹配对进行排序,然后依次选取样本,利用最小二乘法拟合模型,剔除离群点并更新最优解。实验结果表明,与经典的PROSAC和RANSAC算法相比,SESAC算法可以达到相似的精度,同时大大缩短了运行时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Feature matching using sequential evaluation on sample consensus
Consensus evaluation is one of the key issues in vision based feature matching. To improve both efficiency and accuracy of local feature matching, we proposed a Sequential Evaluation on Sample Consensus (SESAC). The addressed approach first sorts the matching pairs in terms of the similarity of the corresponding features, then it sequentially selects the samples, and uses the least squares method to fit the model, by which to reject the outlier points and update the optimal solution. The experimental results demonstrate that compared with the classic PROSAC and RANSAC algorithm, SESAC algorithm can achieve similar accuracy, whereas reduce the running time greatly.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信