有限域上的黎曼假设:从韦尔到现在

J. Milne
{"title":"有限域上的黎曼假设:从韦尔到现在","authors":"J. Milne","doi":"10.4310/ICCM.2016.V4.N2.A4","DOIUrl":null,"url":null,"abstract":"The statement of the Riemann hypothesis makes sense for all global fields, not just the rational numbers. For function fields, it has a natural restatement in terms of the associated curve. Weil's work on the Riemann hypothesis for curves over finite fields led him to state his famous \"Weil conjectures\", which drove much of the progress in algebraic and arithmetic geometry in the following decades. \nIn this article, I describe Weil's work and some of the ensuing progress: Weil cohomology (etale, crystalline); Grothendieck's standard conjectures; motives; Deligne's proof; Hasse-Weil zeta functions and Langlands functoriality.","PeriodicalId":429168,"journal":{"name":"arXiv: History and Overview","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"The Riemann Hypothesis over Finite Fields: From Weil to the Present Day\",\"authors\":\"J. Milne\",\"doi\":\"10.4310/ICCM.2016.V4.N2.A4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The statement of the Riemann hypothesis makes sense for all global fields, not just the rational numbers. For function fields, it has a natural restatement in terms of the associated curve. Weil's work on the Riemann hypothesis for curves over finite fields led him to state his famous \\\"Weil conjectures\\\", which drove much of the progress in algebraic and arithmetic geometry in the following decades. \\nIn this article, I describe Weil's work and some of the ensuing progress: Weil cohomology (etale, crystalline); Grothendieck's standard conjectures; motives; Deligne's proof; Hasse-Weil zeta functions and Langlands functoriality.\",\"PeriodicalId\":429168,\"journal\":{\"name\":\"arXiv: History and Overview\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: History and Overview\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4310/ICCM.2016.V4.N2.A4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: History and Overview","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/ICCM.2016.V4.N2.A4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

黎曼假设的陈述对所有全局域都有意义,而不仅仅是有理数。对于函数场,它有一个自然的关于相关曲线的重述。Weil关于有限域上曲线的黎曼假设的工作使他提出了著名的“Weil猜想”,这在接下来的几十年里推动了代数和算术几何的进步。在这篇文章中,我描述了Weil的工作和一些随后的进展:Weil上同源(etale, crystalline);格罗滕迪克的标准猜想;动机;Deligne的证明;Hasse-Weil函数和Langlands泛函。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Riemann Hypothesis over Finite Fields: From Weil to the Present Day
The statement of the Riemann hypothesis makes sense for all global fields, not just the rational numbers. For function fields, it has a natural restatement in terms of the associated curve. Weil's work on the Riemann hypothesis for curves over finite fields led him to state his famous "Weil conjectures", which drove much of the progress in algebraic and arithmetic geometry in the following decades. In this article, I describe Weil's work and some of the ensuing progress: Weil cohomology (etale, crystalline); Grothendieck's standard conjectures; motives; Deligne's proof; Hasse-Weil zeta functions and Langlands functoriality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信