基于卷积神经网络算法的智能家庭监控系统

R. Sathya, V. Bharathi, S. Ananthi, K. Vaidehi, S. Sangeetha
{"title":"基于卷积神经网络算法的智能家庭监控系统","authors":"R. Sathya, V. Bharathi, S. Ananthi, K. Vaidehi, S. Sangeetha","doi":"10.1109/ICESC57686.2023.10193402","DOIUrl":null,"url":null,"abstract":"The creation of an automated security system aims to protect residences and workplaces by automating visitor entrance and enabling more flexibility in visitor record maintenance. Among all biometric authentications, face recognition is very secure because of unique facial features. There are two phases in authentication, face mask detection and face recognition. In first phase, Grassmann algorithm is used for face mask detection. If any mask is discovered, an alarm will sound for the user to remove the mask and in second phase face recognition is done through CNN. The CNN method is utilized to compare facial traits, and if an outsider is found, a warning message is then displayed to the user. Real time datasets are collected for training and testing the CNN model. The executed result gives 98.02% higher accuracy compared to existing method.","PeriodicalId":235381,"journal":{"name":"2023 4th International Conference on Electronics and Sustainable Communication Systems (ICESC)","volume":"95 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intelligent Home Surveillance System using Convolution Neural Network Algorithms\",\"authors\":\"R. Sathya, V. Bharathi, S. Ananthi, K. Vaidehi, S. Sangeetha\",\"doi\":\"10.1109/ICESC57686.2023.10193402\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The creation of an automated security system aims to protect residences and workplaces by automating visitor entrance and enabling more flexibility in visitor record maintenance. Among all biometric authentications, face recognition is very secure because of unique facial features. There are two phases in authentication, face mask detection and face recognition. In first phase, Grassmann algorithm is used for face mask detection. If any mask is discovered, an alarm will sound for the user to remove the mask and in second phase face recognition is done through CNN. The CNN method is utilized to compare facial traits, and if an outsider is found, a warning message is then displayed to the user. Real time datasets are collected for training and testing the CNN model. The executed result gives 98.02% higher accuracy compared to existing method.\",\"PeriodicalId\":235381,\"journal\":{\"name\":\"2023 4th International Conference on Electronics and Sustainable Communication Systems (ICESC)\",\"volume\":\"95 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 4th International Conference on Electronics and Sustainable Communication Systems (ICESC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICESC57686.2023.10193402\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 4th International Conference on Electronics and Sustainable Communication Systems (ICESC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICESC57686.2023.10193402","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

自动安全系统的创建旨在通过自动访客入口和更灵活的访客记录维护来保护住宅和工作场所。在所有的生物识别认证中,人脸识别由于其独特的面部特征而非常安全。身份验证分为两个阶段:人脸检测和人脸识别。第一阶段,采用Grassmann算法进行人脸检测。如果发现任何口罩,将发出警报,要求用户摘下口罩,第二阶段通过CNN进行人脸识别。利用CNN方法比较面部特征,如果发现外人,就会向用户显示警告信息。实时收集数据集用于训练和测试CNN模型。执行结果与现有方法相比,精度提高了98.02%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Intelligent Home Surveillance System using Convolution Neural Network Algorithms
The creation of an automated security system aims to protect residences and workplaces by automating visitor entrance and enabling more flexibility in visitor record maintenance. Among all biometric authentications, face recognition is very secure because of unique facial features. There are two phases in authentication, face mask detection and face recognition. In first phase, Grassmann algorithm is used for face mask detection. If any mask is discovered, an alarm will sound for the user to remove the mask and in second phase face recognition is done through CNN. The CNN method is utilized to compare facial traits, and if an outsider is found, a warning message is then displayed to the user. Real time datasets are collected for training and testing the CNN model. The executed result gives 98.02% higher accuracy compared to existing method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信