使用多传感器三联来增强便携式和可穿戴设备的失调估计

Medhat Omr, J. Georgy, A. Noureldin
{"title":"使用多传感器三联来增强便携式和可穿戴设备的失调估计","authors":"Medhat Omr, J. Georgy, A. Noureldin","doi":"10.1109/PLANS.2014.6851485","DOIUrl":null,"url":null,"abstract":"Some existing applications on smartphones and tablets use the accelerometers, gyroscopes, and magnetometers to provide basic indoor positioning solution starting from a known position for short time periods. However, this can be achieved only if the portable device is kept in a fixed orientation, which is unrealistic and inconvenient for the user. In unconstrained portable navigation, the mobile device orientation can be freely changed with respect to the human body without any constraints. In this paper, a novel method is proposed to estimate or enhance the heading misalignment angle between one or more smart device(s) and/or wearable appcessories and the moving platform (person or vehicle). An accurate estimation for heading misalignment angle enables users to change their devices' orientation freely with respect to their bodies without any constraint. Different test scenarios are conducted to assess the performance of the proposed technique including different use cases. The results clearly demonstrated the efficacy of the proposed technique in enabling real-time, continuous and reliable consumer localization indoors and outdoors with mobile device.","PeriodicalId":371808,"journal":{"name":"2014 IEEE/ION Position, Location and Navigation Symposium - PLANS 2014","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Using multiple sensor triads for enhanced misalignment estimation for portable and wearable devices\",\"authors\":\"Medhat Omr, J. Georgy, A. Noureldin\",\"doi\":\"10.1109/PLANS.2014.6851485\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Some existing applications on smartphones and tablets use the accelerometers, gyroscopes, and magnetometers to provide basic indoor positioning solution starting from a known position for short time periods. However, this can be achieved only if the portable device is kept in a fixed orientation, which is unrealistic and inconvenient for the user. In unconstrained portable navigation, the mobile device orientation can be freely changed with respect to the human body without any constraints. In this paper, a novel method is proposed to estimate or enhance the heading misalignment angle between one or more smart device(s) and/or wearable appcessories and the moving platform (person or vehicle). An accurate estimation for heading misalignment angle enables users to change their devices' orientation freely with respect to their bodies without any constraint. Different test scenarios are conducted to assess the performance of the proposed technique including different use cases. The results clearly demonstrated the efficacy of the proposed technique in enabling real-time, continuous and reliable consumer localization indoors and outdoors with mobile device.\",\"PeriodicalId\":371808,\"journal\":{\"name\":\"2014 IEEE/ION Position, Location and Navigation Symposium - PLANS 2014\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE/ION Position, Location and Navigation Symposium - PLANS 2014\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PLANS.2014.6851485\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE/ION Position, Location and Navigation Symposium - PLANS 2014","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PLANS.2014.6851485","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

智能手机和平板电脑上的一些现有应用程序使用加速度计、陀螺仪和磁力计来提供基本的室内定位解决方案,从已知位置开始,在短时间内进行定位。然而,这只能在便携式设备保持固定方向的情况下才能实现,这对用户来说是不现实的,也不方便。在不受约束的便携式导航中,移动设备的方向可以不受任何约束地相对于人体自由改变。本文提出了一种新的方法来估计或增强一个或多个智能设备和/或可穿戴设备与移动平台(人或车辆)之间的航向不对准角。准确估计航向不对中角,使用户可以不受任何约束地自由改变设备相对于身体的方向。执行不同的测试场景来评估所建议的技术的性能,包括不同的用例。结果清楚地证明了所提出的技术在室内和室外使用移动设备实现实时、连续和可靠的消费者定位方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using multiple sensor triads for enhanced misalignment estimation for portable and wearable devices
Some existing applications on smartphones and tablets use the accelerometers, gyroscopes, and magnetometers to provide basic indoor positioning solution starting from a known position for short time periods. However, this can be achieved only if the portable device is kept in a fixed orientation, which is unrealistic and inconvenient for the user. In unconstrained portable navigation, the mobile device orientation can be freely changed with respect to the human body without any constraints. In this paper, a novel method is proposed to estimate or enhance the heading misalignment angle between one or more smart device(s) and/or wearable appcessories and the moving platform (person or vehicle). An accurate estimation for heading misalignment angle enables users to change their devices' orientation freely with respect to their bodies without any constraint. Different test scenarios are conducted to assess the performance of the proposed technique including different use cases. The results clearly demonstrated the efficacy of the proposed technique in enabling real-time, continuous and reliable consumer localization indoors and outdoors with mobile device.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信