Daniel A. Brooks, Olivier Schwander, F. Barbaresco, J. Schneider, M. Cord
{"title":"无人机微多普勒分类的时间深度学习","authors":"Daniel A. Brooks, Olivier Schwander, F. Barbaresco, J. Schneider, M. Cord","doi":"10.23919/IRS.2018.8447963","DOIUrl":null,"url":null,"abstract":"This work builds temporal deep learning architectures for the classification of time-frequency signal representations on a novel model of simulated radar datasets. We show and compare the success of these models and validate the interest of temporal structures to gain on classification confidence over time.","PeriodicalId":436201,"journal":{"name":"2018 19th International Radar Symposium (IRS)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":"{\"title\":\"Temporal Deep Learning for Drone Micro-Doppler Classification\",\"authors\":\"Daniel A. Brooks, Olivier Schwander, F. Barbaresco, J. Schneider, M. Cord\",\"doi\":\"10.23919/IRS.2018.8447963\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work builds temporal deep learning architectures for the classification of time-frequency signal representations on a novel model of simulated radar datasets. We show and compare the success of these models and validate the interest of temporal structures to gain on classification confidence over time.\",\"PeriodicalId\":436201,\"journal\":{\"name\":\"2018 19th International Radar Symposium (IRS)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"40\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 19th International Radar Symposium (IRS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/IRS.2018.8447963\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 19th International Radar Symposium (IRS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/IRS.2018.8447963","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Temporal Deep Learning for Drone Micro-Doppler Classification
This work builds temporal deep learning architectures for the classification of time-frequency signal representations on a novel model of simulated radar datasets. We show and compare the success of these models and validate the interest of temporal structures to gain on classification confidence over time.