利用统计参数进行混沌检测

K. Vibe-Rheymer, J. Vesin
{"title":"利用统计参数进行混沌检测","authors":"K. Vibe-Rheymer, J. Vesin","doi":"10.1109/DSPWS.1996.555574","DOIUrl":null,"url":null,"abstract":"Detecting chaos in experimental data is a nontrivial problem. Nowadays, most techniques require long data sets and a low amount of noise in the data, which is not always possible. Besides, the results often leave much room to interpretation. The paper proposes an alternative to classical methods, using statistical techniques. The chaos detection test is decomposed into two sub-tests, detecting respectively the presence of fractality and nonlinearity in the signal. Several possible tests for each feature are presented and analyzed; the best combination test is then proposed.","PeriodicalId":131323,"journal":{"name":"1996 IEEE Digital Signal Processing Workshop Proceedings","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Using statistical parameters for chaos detection\",\"authors\":\"K. Vibe-Rheymer, J. Vesin\",\"doi\":\"10.1109/DSPWS.1996.555574\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Detecting chaos in experimental data is a nontrivial problem. Nowadays, most techniques require long data sets and a low amount of noise in the data, which is not always possible. Besides, the results often leave much room to interpretation. The paper proposes an alternative to classical methods, using statistical techniques. The chaos detection test is decomposed into two sub-tests, detecting respectively the presence of fractality and nonlinearity in the signal. Several possible tests for each feature are presented and analyzed; the best combination test is then proposed.\",\"PeriodicalId\":131323,\"journal\":{\"name\":\"1996 IEEE Digital Signal Processing Workshop Proceedings\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1996 IEEE Digital Signal Processing Workshop Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DSPWS.1996.555574\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1996 IEEE Digital Signal Processing Workshop Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSPWS.1996.555574","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

检测实验数据中的混沌是一个非常重要的问题。如今,大多数技术需要较长的数据集和较低的数据噪声,这并不总是可能的。此外,结果往往留有很大的解释空间。本文提出了一种替代经典方法的方法,即使用统计技术。混沌检测测试分为两个子测试,分别检测信号中是否存在分形和非线性。提出并分析了每个特征的几种可能的测试;然后提出了最佳组合试验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using statistical parameters for chaos detection
Detecting chaos in experimental data is a nontrivial problem. Nowadays, most techniques require long data sets and a low amount of noise in the data, which is not always possible. Besides, the results often leave much room to interpretation. The paper proposes an alternative to classical methods, using statistical techniques. The chaos detection test is decomposed into two sub-tests, detecting respectively the presence of fractality and nonlinearity in the signal. Several possible tests for each feature are presented and analyzed; the best combination test is then proposed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信