Yibo Zhu, R. Zhou, Zheng Peng, M. Zuba, Jun-hong Cui
{"title":"一种有效的水声网络地理路由感知MAC协议","authors":"Yibo Zhu, R. Zhou, Zheng Peng, M. Zuba, Jun-hong Cui","doi":"10.4108/icst.trans.mca.2011.e6","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an efficient geo-routing aware MAC protocol (GOAL) for underwater acoustic networks. It smoothly integrates self-adaptation based RTS/CTS, geographic cyber carrier sense and implicit ACK to do combined channel reservation and next hop selection. As a result, it possesses the advantages of both geo-routing protocol and reservation based MAC protocol. Specifically, its self-adaptation based RTS/CTS, node can dynamically find out the best nexthop with low route discovery cost. In addition, through geographic cyber carrier sense, node can map its neighbors’ time slots for sending/receiving DATA packets to its own time line, and thus the collision among data packets can be greatly reduced. With these features, GOAL outperforms geo-routing protocols. Plentiful simulation results show that GOAL provides much higher end-to-end reliability with lower energy consumptions than existing VBF routing with broadcast MAC protocol.","PeriodicalId":299985,"journal":{"name":"EAI Endorsed Trans. Mob. Commun. Appl.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"An efficient geo-routing aware MAC protocol for underwater acoustic networks\",\"authors\":\"Yibo Zhu, R. Zhou, Zheng Peng, M. Zuba, Jun-hong Cui\",\"doi\":\"10.4108/icst.trans.mca.2011.e6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose an efficient geo-routing aware MAC protocol (GOAL) for underwater acoustic networks. It smoothly integrates self-adaptation based RTS/CTS, geographic cyber carrier sense and implicit ACK to do combined channel reservation and next hop selection. As a result, it possesses the advantages of both geo-routing protocol and reservation based MAC protocol. Specifically, its self-adaptation based RTS/CTS, node can dynamically find out the best nexthop with low route discovery cost. In addition, through geographic cyber carrier sense, node can map its neighbors’ time slots for sending/receiving DATA packets to its own time line, and thus the collision among data packets can be greatly reduced. With these features, GOAL outperforms geo-routing protocols. Plentiful simulation results show that GOAL provides much higher end-to-end reliability with lower energy consumptions than existing VBF routing with broadcast MAC protocol.\",\"PeriodicalId\":299985,\"journal\":{\"name\":\"EAI Endorsed Trans. Mob. Commun. Appl.\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EAI Endorsed Trans. Mob. Commun. Appl.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4108/icst.trans.mca.2011.e6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EAI Endorsed Trans. Mob. Commun. Appl.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4108/icst.trans.mca.2011.e6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An efficient geo-routing aware MAC protocol for underwater acoustic networks
In this paper, we propose an efficient geo-routing aware MAC protocol (GOAL) for underwater acoustic networks. It smoothly integrates self-adaptation based RTS/CTS, geographic cyber carrier sense and implicit ACK to do combined channel reservation and next hop selection. As a result, it possesses the advantages of both geo-routing protocol and reservation based MAC protocol. Specifically, its self-adaptation based RTS/CTS, node can dynamically find out the best nexthop with low route discovery cost. In addition, through geographic cyber carrier sense, node can map its neighbors’ time slots for sending/receiving DATA packets to its own time line, and thus the collision among data packets can be greatly reduced. With these features, GOAL outperforms geo-routing protocols. Plentiful simulation results show that GOAL provides much higher end-to-end reliability with lower energy consumptions than existing VBF routing with broadcast MAC protocol.