使用最小上下文无关语法的相似性度量

D. Cerra, M. Datcu
{"title":"使用最小上下文无关语法的相似性度量","authors":"D. Cerra, M. Datcu","doi":"10.1109/DCC.2010.37","DOIUrl":null,"url":null,"abstract":"This work presents a new approximation for the Kolmogorov complexity of strings based on compression with smallest Context Free Grammars (CFG). If, for a given string, a dictionary containing its relevant patterns may be regarded as a model, a Context-Free Grammar may represent a generative model, with all of its rules (and as a consequence its own size) being meaningful. Thus, we define a new complexity approximation which takes into account the size of the string model, in a representation similar to the Minimum Description Length. These considerations result in the definition of a new compression-based similarity measure: its novelty lies in the fact that the impact of complexity overestimations, due to the limits that a real compressor has, can be accounted for and decreased.","PeriodicalId":299459,"journal":{"name":"2010 Data Compression Conference","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A Similarity Measure Using Smallest Context-Free Grammars\",\"authors\":\"D. Cerra, M. Datcu\",\"doi\":\"10.1109/DCC.2010.37\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work presents a new approximation for the Kolmogorov complexity of strings based on compression with smallest Context Free Grammars (CFG). If, for a given string, a dictionary containing its relevant patterns may be regarded as a model, a Context-Free Grammar may represent a generative model, with all of its rules (and as a consequence its own size) being meaningful. Thus, we define a new complexity approximation which takes into account the size of the string model, in a representation similar to the Minimum Description Length. These considerations result in the definition of a new compression-based similarity measure: its novelty lies in the fact that the impact of complexity overestimations, due to the limits that a real compressor has, can be accounted for and decreased.\",\"PeriodicalId\":299459,\"journal\":{\"name\":\"2010 Data Compression Conference\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Data Compression Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DCC.2010.37\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Data Compression Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCC.2010.37","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文提出了一种基于最小上下文无关语法(CFG)压缩的字符串Kolmogorov复杂度的新近似。对于给定的字符串,如果包含其相关模式的字典可以被视为一个模型,那么上下文无关语法可以代表一个生成模型,其所有规则(以及其自身的大小)都是有意义的。因此,我们定义了一个新的复杂性近似,它考虑了字符串模型的大小,以类似于最小描述长度的表示。这些考虑导致了一种新的基于压缩的相似性度量的定义:它的新颖之处在于,由于真实压缩器的限制,复杂性高估的影响可以被考虑和减少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Similarity Measure Using Smallest Context-Free Grammars
This work presents a new approximation for the Kolmogorov complexity of strings based on compression with smallest Context Free Grammars (CFG). If, for a given string, a dictionary containing its relevant patterns may be regarded as a model, a Context-Free Grammar may represent a generative model, with all of its rules (and as a consequence its own size) being meaningful. Thus, we define a new complexity approximation which takes into account the size of the string model, in a representation similar to the Minimum Description Length. These considerations result in the definition of a new compression-based similarity measure: its novelty lies in the fact that the impact of complexity overestimations, due to the limits that a real compressor has, can be accounted for and decreased.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信