{"title":"基于商品设备的交互式沉浸式远程教育平台","authors":"Jiangong Chen, Feng Qian, Bin Li","doi":"10.1109/INFOCOMWKSHPS51825.2021.9484492","DOIUrl":null,"url":null,"abstract":"Virtual reality (VR) holds a great potential to provide interactive and immersive learning experiences for students in remote education by using existing mobile devices, which is extremely meaningful during the current pandemic. In such a VR application, satisfactory user experience requires: 1) high-resolution panoramic image rendering; 2) high frame rate; 3) synchronization among users. This requires that either mobile devices perform fast image rendering or today’s wireless network can support multi-Gbps traffic with extremely low delay, neither of which is the case in current practice. In this demo, we develop a platform for interactive and immersive remote education based on commodity devices, where a server performs rendering to ensure that the rendered images have high-resolution (2560×1440 pixels) and are displayed at a high frame rate (60 frames per second) on the client-side. We further leverage motion prediction to overcome the diverse round-trip time (RTT) between a server and users and ensure synchronization among users (average 9.2 ms frame latency difference among users), which improves at least 60% and 20% compared to the existing local-rendering and server-rendering methods, respectively.","PeriodicalId":109588,"journal":{"name":"IEEE INFOCOM 2021 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An Interactive and Immersive Remote Education Platform based on Commodity Devices\",\"authors\":\"Jiangong Chen, Feng Qian, Bin Li\",\"doi\":\"10.1109/INFOCOMWKSHPS51825.2021.9484492\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Virtual reality (VR) holds a great potential to provide interactive and immersive learning experiences for students in remote education by using existing mobile devices, which is extremely meaningful during the current pandemic. In such a VR application, satisfactory user experience requires: 1) high-resolution panoramic image rendering; 2) high frame rate; 3) synchronization among users. This requires that either mobile devices perform fast image rendering or today’s wireless network can support multi-Gbps traffic with extremely low delay, neither of which is the case in current practice. In this demo, we develop a platform for interactive and immersive remote education based on commodity devices, where a server performs rendering to ensure that the rendered images have high-resolution (2560×1440 pixels) and are displayed at a high frame rate (60 frames per second) on the client-side. We further leverage motion prediction to overcome the diverse round-trip time (RTT) between a server and users and ensure synchronization among users (average 9.2 ms frame latency difference among users), which improves at least 60% and 20% compared to the existing local-rendering and server-rendering methods, respectively.\",\"PeriodicalId\":109588,\"journal\":{\"name\":\"IEEE INFOCOM 2021 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE INFOCOM 2021 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INFOCOMWKSHPS51825.2021.9484492\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE INFOCOM 2021 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFOCOMWKSHPS51825.2021.9484492","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Interactive and Immersive Remote Education Platform based on Commodity Devices
Virtual reality (VR) holds a great potential to provide interactive and immersive learning experiences for students in remote education by using existing mobile devices, which is extremely meaningful during the current pandemic. In such a VR application, satisfactory user experience requires: 1) high-resolution panoramic image rendering; 2) high frame rate; 3) synchronization among users. This requires that either mobile devices perform fast image rendering or today’s wireless network can support multi-Gbps traffic with extremely low delay, neither of which is the case in current practice. In this demo, we develop a platform for interactive and immersive remote education based on commodity devices, where a server performs rendering to ensure that the rendered images have high-resolution (2560×1440 pixels) and are displayed at a high frame rate (60 frames per second) on the client-side. We further leverage motion prediction to overcome the diverse round-trip time (RTT) between a server and users and ensure synchronization among users (average 9.2 ms frame latency difference among users), which improves at least 60% and 20% compared to the existing local-rendering and server-rendering methods, respectively.