基于厚凸壳的SVM快速训练

Hong-da Zhang, Xiao-dan Wang, Hai-long Xu, Yan-lei Li, Wen Quan
{"title":"基于厚凸壳的SVM快速训练","authors":"Hong-da Zhang, Xiao-dan Wang, Hai-long Xu, Yan-lei Li, Wen Quan","doi":"10.1109/CISP.2008.575","DOIUrl":null,"url":null,"abstract":"To improve the training speed of SVM, we propose a new SVM training approach which takes thick convex-hull as training set. The approach makes better use of the margin information for classification of data sets, and thus extends the use of convex hull to approximately linearly separable problems. Experiments on 5 UCI data sets indicate that the approach speeds up training of SVM with guarantee of generalization accuracy.","PeriodicalId":430882,"journal":{"name":"2008 Congress on Image and Signal Processing","volume":"134 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Fast SVM Training Based on Thick Convex-hull\",\"authors\":\"Hong-da Zhang, Xiao-dan Wang, Hai-long Xu, Yan-lei Li, Wen Quan\",\"doi\":\"10.1109/CISP.2008.575\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To improve the training speed of SVM, we propose a new SVM training approach which takes thick convex-hull as training set. The approach makes better use of the margin information for classification of data sets, and thus extends the use of convex hull to approximately linearly separable problems. Experiments on 5 UCI data sets indicate that the approach speeds up training of SVM with guarantee of generalization accuracy.\",\"PeriodicalId\":430882,\"journal\":{\"name\":\"2008 Congress on Image and Signal Processing\",\"volume\":\"134 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 Congress on Image and Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CISP.2008.575\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Congress on Image and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISP.2008.575","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

为了提高支持向量机的训练速度,提出了一种以厚凸船体为训练集的支持向量机训练方法。该方法可以更好地利用边缘信息对数据集进行分类,从而将凸包的应用扩展到近似线性可分问题。在5个UCI数据集上的实验表明,该方法在保证泛化精度的前提下加快了SVM的训练速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast SVM Training Based on Thick Convex-hull
To improve the training speed of SVM, we propose a new SVM training approach which takes thick convex-hull as training set. The approach makes better use of the margin information for classification of data sets, and thus extends the use of convex hull to approximately linearly separable problems. Experiments on 5 UCI data sets indicate that the approach speeds up training of SVM with guarantee of generalization accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信