全向相机3D SLAM

Yuttana Suttasupa, A. Sudsang, N. Niparnan
{"title":"全向相机3D SLAM","authors":"Yuttana Suttasupa, A. Sudsang, N. Niparnan","doi":"10.1109/ROBIO.2009.4913107","DOIUrl":null,"url":null,"abstract":"This paper proposes a method for simultaneous localization and mapping using a hand-held omnidirectional camera traversing in a 3D environment with an unpredictable trajectory. Unlike most existing works, the method does not assume any motion model of the camera. The proposed method follows the extended Kalman filter (EKF) framework for which we propose an update process that takes into account many camera's poses estimated several steps prior to the current update. Each of these poses is used as a reference for approximating the current pose using a nonlinear least square computation. This update process is shown to efficiently avoids map divergence. The method is implemented and preliminary experimental results are presented.","PeriodicalId":321332,"journal":{"name":"2008 IEEE International Conference on Robotics and Biomimetics","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"3D SLAM for omnidirectional camera\",\"authors\":\"Yuttana Suttasupa, A. Sudsang, N. Niparnan\",\"doi\":\"10.1109/ROBIO.2009.4913107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a method for simultaneous localization and mapping using a hand-held omnidirectional camera traversing in a 3D environment with an unpredictable trajectory. Unlike most existing works, the method does not assume any motion model of the camera. The proposed method follows the extended Kalman filter (EKF) framework for which we propose an update process that takes into account many camera's poses estimated several steps prior to the current update. Each of these poses is used as a reference for approximating the current pose using a nonlinear least square computation. This update process is shown to efficiently avoids map divergence. The method is implemented and preliminary experimental results are presented.\",\"PeriodicalId\":321332,\"journal\":{\"name\":\"2008 IEEE International Conference on Robotics and Biomimetics\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE International Conference on Robotics and Biomimetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ROBIO.2009.4913107\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Conference on Robotics and Biomimetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBIO.2009.4913107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种利用手持式全向相机在轨迹不可预测的三维环境中进行同时定位和映射的方法。与大多数现有工作不同,该方法不假设相机的任何运动模型。所提出的方法遵循扩展卡尔曼滤波(EKF)框架,我们提出了一个更新过程,该过程考虑了当前更新前几个步骤估计的许多相机姿势。每个位姿都作为参考,使用非线性最小二乘计算来近似当前位姿。这种更新过程可以有效地避免地图发散。给出了该方法的实现和初步实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
3D SLAM for omnidirectional camera
This paper proposes a method for simultaneous localization and mapping using a hand-held omnidirectional camera traversing in a 3D environment with an unpredictable trajectory. Unlike most existing works, the method does not assume any motion model of the camera. The proposed method follows the extended Kalman filter (EKF) framework for which we propose an update process that takes into account many camera's poses estimated several steps prior to the current update. Each of these poses is used as a reference for approximating the current pose using a nonlinear least square computation. This update process is shown to efficiently avoids map divergence. The method is implemented and preliminary experimental results are presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信