不确定条件下基于可靠性的强化学习

Zequn Wang, Narendra Patwardhan
{"title":"不确定条件下基于可靠性的强化学习","authors":"Zequn Wang, Narendra Patwardhan","doi":"10.1115/detc2020-22019","DOIUrl":null,"url":null,"abstract":"\n Despite the numerous advances, reinforcement learning remains away from widespread acceptance for autonomous controller design as compared to classical methods due to lack of ability to effectively tackle uncertainty. The reliance on absolute or deterministic reward as a metric for optimization process renders reinforcement learning highly susceptible to changes in problem dynamics. We introduce a novel framework that effectively quantify the uncertainty in the design space and induces robustness in controllers by switching to a reliability-based optimization routine. A model-based approach is used to improve the data efficiency of the method while predicting the system dynamics. We prove the stability of learned neuro-controllers in both static and dynamic environments on classical reinforcement learning tasks such as Cart Pole balancing and Inverted Pendulum.","PeriodicalId":415040,"journal":{"name":"Volume 11A: 46th Design Automation Conference (DAC)","volume":"115 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reliability-Based Reinforcement Learning Under Uncertainty\",\"authors\":\"Zequn Wang, Narendra Patwardhan\",\"doi\":\"10.1115/detc2020-22019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Despite the numerous advances, reinforcement learning remains away from widespread acceptance for autonomous controller design as compared to classical methods due to lack of ability to effectively tackle uncertainty. The reliance on absolute or deterministic reward as a metric for optimization process renders reinforcement learning highly susceptible to changes in problem dynamics. We introduce a novel framework that effectively quantify the uncertainty in the design space and induces robustness in controllers by switching to a reliability-based optimization routine. A model-based approach is used to improve the data efficiency of the method while predicting the system dynamics. We prove the stability of learned neuro-controllers in both static and dynamic environments on classical reinforcement learning tasks such as Cart Pole balancing and Inverted Pendulum.\",\"PeriodicalId\":415040,\"journal\":{\"name\":\"Volume 11A: 46th Design Automation Conference (DAC)\",\"volume\":\"115 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 11A: 46th Design Automation Conference (DAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/detc2020-22019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 11A: 46th Design Automation Conference (DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/detc2020-22019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

尽管取得了许多进步,但与经典方法相比,由于缺乏有效解决不确定性的能力,强化学习在自主控制器设计中仍未被广泛接受。依赖绝对或确定性奖励作为优化过程的度量使得强化学习极易受到问题动力学变化的影响。我们引入了一个新的框架,可以有效地量化设计空间中的不确定性,并通过切换到基于可靠性的优化程序来诱导控制器的鲁棒性。在对系统动力学进行预测时,采用基于模型的方法提高了方法的数据效率。在经典的强化学习任务如推车杆平衡和倒立摆上,我们证明了学习神经控制器在静态和动态环境下的稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reliability-Based Reinforcement Learning Under Uncertainty
Despite the numerous advances, reinforcement learning remains away from widespread acceptance for autonomous controller design as compared to classical methods due to lack of ability to effectively tackle uncertainty. The reliance on absolute or deterministic reward as a metric for optimization process renders reinforcement learning highly susceptible to changes in problem dynamics. We introduce a novel framework that effectively quantify the uncertainty in the design space and induces robustness in controllers by switching to a reliability-based optimization routine. A model-based approach is used to improve the data efficiency of the method while predicting the system dynamics. We prove the stability of learned neuro-controllers in both static and dynamic environments on classical reinforcement learning tasks such as Cart Pole balancing and Inverted Pendulum.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信