Exascale可重构数据流平台的性能评估

Ryota Yasudo, J. Coutinho, A. Varbanescu, W. Luk, H. Amano, Tobias Becker
{"title":"Exascale可重构数据流平台的性能评估","authors":"Ryota Yasudo, J. Coutinho, A. Varbanescu, W. Luk, H. Amano, Tobias Becker","doi":"10.1109/FPT.2018.00062","DOIUrl":null,"url":null,"abstract":"The next generation high-performance computing platforms will need to support exascale computing. A promising path in achieving exascale is to embrace heterogeneity and specialised computing in the form of reconfigurable accelerators. However, assessing the feasibility of heterogeneous exascale systems requires fast and accurate performance prediction. This paper proposes PERKS, a novel performance estimation frame-work for reconfigurable dataflow platforms (RDPs). PERKS uses machine and application parameters to build an analytical model for predicting the performance of multi-accelerator systems. Moreover, model calibration is automatic, making the model flexible and usable for different machine configurations and applications. Our experimental results demonstrate that PERKS can predict the performance of current workloads and RDPs with an accuracy above 95%. We also demonstrate how the modelling scales to exascale workloads and exascale platforms.","PeriodicalId":434541,"journal":{"name":"2018 International Conference on Field-Programmable Technology (FPT)","volume":"113 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Performance Estimation for Exascale Reconfigurable Dataflow Platforms\",\"authors\":\"Ryota Yasudo, J. Coutinho, A. Varbanescu, W. Luk, H. Amano, Tobias Becker\",\"doi\":\"10.1109/FPT.2018.00062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The next generation high-performance computing platforms will need to support exascale computing. A promising path in achieving exascale is to embrace heterogeneity and specialised computing in the form of reconfigurable accelerators. However, assessing the feasibility of heterogeneous exascale systems requires fast and accurate performance prediction. This paper proposes PERKS, a novel performance estimation frame-work for reconfigurable dataflow platforms (RDPs). PERKS uses machine and application parameters to build an analytical model for predicting the performance of multi-accelerator systems. Moreover, model calibration is automatic, making the model flexible and usable for different machine configurations and applications. Our experimental results demonstrate that PERKS can predict the performance of current workloads and RDPs with an accuracy above 95%. We also demonstrate how the modelling scales to exascale workloads and exascale platforms.\",\"PeriodicalId\":434541,\"journal\":{\"name\":\"2018 International Conference on Field-Programmable Technology (FPT)\",\"volume\":\"113 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Field-Programmable Technology (FPT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FPT.2018.00062\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Field-Programmable Technology (FPT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FPT.2018.00062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

下一代高性能计算平台将需要支持百亿亿次计算。实现百亿亿次的一个有希望的途径是以可重构加速器的形式拥抱异构性和专门化计算。然而,评估异构百亿亿级系统的可行性需要快速准确的性能预测。提出了一种新的可重构数据流平台(rdp)性能评估框架——PERKS。PERKS使用机器和应用参数来建立预测多加速器系统性能的分析模型。此外,模型校准是自动的,使模型灵活,可用于不同的机器配置和应用。我们的实验结果表明,PERKS可以预测当前工作负载和rdp的性能,准确率在95%以上。我们还演示了建模如何扩展到百亿亿次工作负载和百亿亿次平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance Estimation for Exascale Reconfigurable Dataflow Platforms
The next generation high-performance computing platforms will need to support exascale computing. A promising path in achieving exascale is to embrace heterogeneity and specialised computing in the form of reconfigurable accelerators. However, assessing the feasibility of heterogeneous exascale systems requires fast and accurate performance prediction. This paper proposes PERKS, a novel performance estimation frame-work for reconfigurable dataflow platforms (RDPs). PERKS uses machine and application parameters to build an analytical model for predicting the performance of multi-accelerator systems. Moreover, model calibration is automatic, making the model flexible and usable for different machine configurations and applications. Our experimental results demonstrate that PERKS can predict the performance of current workloads and RDPs with an accuracy above 95%. We also demonstrate how the modelling scales to exascale workloads and exascale platforms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信