一些纹理特征在肌肉组织分类中的性能评价

P. Reuze, A. Bruno, E. Le Rumeur
{"title":"一些纹理特征在肌肉组织分类中的性能评价","authors":"P. Reuze, A. Bruno, E. Le Rumeur","doi":"10.1109/IEMBS.1994.411843","DOIUrl":null,"url":null,"abstract":"Textural features are compared for the classification of MR muscle images. The objective is to determine which features optimize classification rate using small ROIs. Four classes of textural features are considered: the authors have studied fractal, cooccurrence, higher order statistics and mathematical morphology. The quantitative evaluation of the discrimination power of the features is based on the performance of the classification error rate with a K-nearest neighbor classifier. The results shows that the mathematical morphology features provide the best classification rate on the authors' clinical MR images of healthy and sick muscles.<<ETX>>","PeriodicalId":344622,"journal":{"name":"Proceedings of 16th Annual International Conference of the IEEE Engineering in Medicine and Biology Society","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Performance evaluation of some textural features for muscle tissue classification\",\"authors\":\"P. Reuze, A. Bruno, E. Le Rumeur\",\"doi\":\"10.1109/IEMBS.1994.411843\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Textural features are compared for the classification of MR muscle images. The objective is to determine which features optimize classification rate using small ROIs. Four classes of textural features are considered: the authors have studied fractal, cooccurrence, higher order statistics and mathematical morphology. The quantitative evaluation of the discrimination power of the features is based on the performance of the classification error rate with a K-nearest neighbor classifier. The results shows that the mathematical morphology features provide the best classification rate on the authors' clinical MR images of healthy and sick muscles.<<ETX>>\",\"PeriodicalId\":344622,\"journal\":{\"name\":\"Proceedings of 16th Annual International Conference of the IEEE Engineering in Medicine and Biology Society\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 16th Annual International Conference of the IEEE Engineering in Medicine and Biology Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEMBS.1994.411843\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 16th Annual International Conference of the IEEE Engineering in Medicine and Biology Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEMBS.1994.411843","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

通过比较纹理特征对MR肌肉图像进行分类。目标是确定哪些特征使用较小的roi优化分类率。本文研究了四类纹理特征:分形、共现、高阶统计和数学形态学。特征识别能力的定量评价是基于k近邻分类器的分类错误率的表现。结果表明,数学形态学特征对作者的健康和病态肌肉的临床MR图像提供了最佳的分类率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance evaluation of some textural features for muscle tissue classification
Textural features are compared for the classification of MR muscle images. The objective is to determine which features optimize classification rate using small ROIs. Four classes of textural features are considered: the authors have studied fractal, cooccurrence, higher order statistics and mathematical morphology. The quantitative evaluation of the discrimination power of the features is based on the performance of the classification error rate with a K-nearest neighbor classifier. The results shows that the mathematical morphology features provide the best classification rate on the authors' clinical MR images of healthy and sick muscles.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信