{"title":"“神威太湖之光”上18.9 pflops非线性地震模拟:18hz和8米情景的使能描述","authors":"H. Fu, Conghui He, Bingwei Chen, Zekun Yin, Zhenguo Zhang, Wenqiang Zhang, Tingjian Zhang, Wei Xue, Weiguo Liu, Wanwang Yin, Guangwen Yang, Xiaofei Chen","doi":"10.1145/3126908.3126910","DOIUrl":null,"url":null,"abstract":"This paper reports our large-scale nonlinear earthquake simulation software on Sunway TaihuLight. Our innovations include: (1) a customized parallelization scheme that employs the 10 million cores efficiently at both the process and the thread levels; (2) an elaborate memory scheme that integrates on-chip halo exchange through register communcation, optimized blocking configuration guided by an analytic model, and coalesced DMA access with array fusion; (3) on-the-fly compression that doubles the maximum problem size and further improves the performance by 24%. With these innovations to remove the memory constraints of Sunway TaihuLight, our software achieves over 15% of the system’s peak, better than the 11.8% efficiency achieved by a similar software running on Titan, whose byte to flop ratio is 5 times better than TaihuLight. The extreme cases demonstrate a sustained performance of over 18.9 Pflops, enabling the simulation of Tangshan earthquake as an 18-Hz scenario with an 8-meter resolution.","PeriodicalId":204241,"journal":{"name":"SC17: International Conference for High Performance Computing, Networking, Storage and Analysis","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"96","resultStr":"{\"title\":\"18.9-Pflops Nonlinear Earthquake Simulation on Sunway TaihuLight: Enabling Depiction of 18-Hz and 8-Meter Scenarios\",\"authors\":\"H. Fu, Conghui He, Bingwei Chen, Zekun Yin, Zhenguo Zhang, Wenqiang Zhang, Tingjian Zhang, Wei Xue, Weiguo Liu, Wanwang Yin, Guangwen Yang, Xiaofei Chen\",\"doi\":\"10.1145/3126908.3126910\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper reports our large-scale nonlinear earthquake simulation software on Sunway TaihuLight. Our innovations include: (1) a customized parallelization scheme that employs the 10 million cores efficiently at both the process and the thread levels; (2) an elaborate memory scheme that integrates on-chip halo exchange through register communcation, optimized blocking configuration guided by an analytic model, and coalesced DMA access with array fusion; (3) on-the-fly compression that doubles the maximum problem size and further improves the performance by 24%. With these innovations to remove the memory constraints of Sunway TaihuLight, our software achieves over 15% of the system’s peak, better than the 11.8% efficiency achieved by a similar software running on Titan, whose byte to flop ratio is 5 times better than TaihuLight. The extreme cases demonstrate a sustained performance of over 18.9 Pflops, enabling the simulation of Tangshan earthquake as an 18-Hz scenario with an 8-meter resolution.\",\"PeriodicalId\":204241,\"journal\":{\"name\":\"SC17: International Conference for High Performance Computing, Networking, Storage and Analysis\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"96\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SC17: International Conference for High Performance Computing, Networking, Storage and Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3126908.3126910\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SC17: International Conference for High Performance Computing, Networking, Storage and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3126908.3126910","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
18.9-Pflops Nonlinear Earthquake Simulation on Sunway TaihuLight: Enabling Depiction of 18-Hz and 8-Meter Scenarios
This paper reports our large-scale nonlinear earthquake simulation software on Sunway TaihuLight. Our innovations include: (1) a customized parallelization scheme that employs the 10 million cores efficiently at both the process and the thread levels; (2) an elaborate memory scheme that integrates on-chip halo exchange through register communcation, optimized blocking configuration guided by an analytic model, and coalesced DMA access with array fusion; (3) on-the-fly compression that doubles the maximum problem size and further improves the performance by 24%. With these innovations to remove the memory constraints of Sunway TaihuLight, our software achieves over 15% of the system’s peak, better than the 11.8% efficiency achieved by a similar software running on Titan, whose byte to flop ratio is 5 times better than TaihuLight. The extreme cases demonstrate a sustained performance of over 18.9 Pflops, enabling the simulation of Tangshan earthquake as an 18-Hz scenario with an 8-meter resolution.