玄武岩产品达到全部潜在热容的速度:实验结果

Karin Rindt, L. Pilař, F. Hrdlička
{"title":"玄武岩产品达到全部潜在热容的速度:实验结果","authors":"Karin Rindt, L. Pilař, F. Hrdlička","doi":"10.2991/ahe.k.220301.014","DOIUrl":null,"url":null,"abstract":"Renewable Energy Sources naturally deliver energy intermittently, causing fluctuations in energy supply. The energy is therefore also not provided corresponding to the actual need, but according to the availability. Hence, the demand for energy storage is rising with the increasing utilization of renewable energy sources, tackling the difficulties coming along with it. Carnot-Batteries are one out of a few geographically independent storage possibilities for longer durations. The thermal energy storages employed in Carnot-Batteries vary from liquid molten salt storage with two-tanks or single-tank thermocline storage to packed bed configurations with encapsulated PCM or natural solid materials, like rocks. Storage materials, which are found plenty in nature, having nearly no direct impact on the environment, are water and rocks. Natural Rocks offer a greater temperature span for operation than water and are therefore suitable for a wider range of applications. A possible natural rock for use in thermal energy storage is volcanic material basalt. In this experimental work, basalt, after its usage in cast form as flue pipes in a power plant, is analyzed, focusing on its properties for energy storage applications. Using this product would offer the reuse of an otherwise not anymore useful, leftover product and provide a storage material without the need of taking it from nature. The experimental research to retrieve the speed of reaching the full potential heat capacity of this product is described. The samples of basalt and the basalt product are analyzed at different temperatures from 300°C to 750°C. Additionally, air cooling, from these temperatures down to 100°C, and surface structure changes are evaluated. Insights into important boundary conditions for employment as storage material are given. In future work, it is anticipated to use these results as the base for a charging model of the basalt product and its validation.","PeriodicalId":177278,"journal":{"name":"Atlantis Highlights in Engineering","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Speed Of Reaching The Full Potential Heat Capacity Of A Basalt Product: Experimental Results\",\"authors\":\"Karin Rindt, L. Pilař, F. Hrdlička\",\"doi\":\"10.2991/ahe.k.220301.014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Renewable Energy Sources naturally deliver energy intermittently, causing fluctuations in energy supply. The energy is therefore also not provided corresponding to the actual need, but according to the availability. Hence, the demand for energy storage is rising with the increasing utilization of renewable energy sources, tackling the difficulties coming along with it. Carnot-Batteries are one out of a few geographically independent storage possibilities for longer durations. The thermal energy storages employed in Carnot-Batteries vary from liquid molten salt storage with two-tanks or single-tank thermocline storage to packed bed configurations with encapsulated PCM or natural solid materials, like rocks. Storage materials, which are found plenty in nature, having nearly no direct impact on the environment, are water and rocks. Natural Rocks offer a greater temperature span for operation than water and are therefore suitable for a wider range of applications. A possible natural rock for use in thermal energy storage is volcanic material basalt. In this experimental work, basalt, after its usage in cast form as flue pipes in a power plant, is analyzed, focusing on its properties for energy storage applications. Using this product would offer the reuse of an otherwise not anymore useful, leftover product and provide a storage material without the need of taking it from nature. The experimental research to retrieve the speed of reaching the full potential heat capacity of this product is described. The samples of basalt and the basalt product are analyzed at different temperatures from 300°C to 750°C. Additionally, air cooling, from these temperatures down to 100°C, and surface structure changes are evaluated. Insights into important boundary conditions for employment as storage material are given. In future work, it is anticipated to use these results as the base for a charging model of the basalt product and its validation.\",\"PeriodicalId\":177278,\"journal\":{\"name\":\"Atlantis Highlights in Engineering\",\"volume\":\"81 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atlantis Highlights in Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2991/ahe.k.220301.014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atlantis Highlights in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2991/ahe.k.220301.014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

可再生能源的自然供能是间歇性的,会造成能源供应的波动。因此,能源也不是按实际需要提供,而是按可得性提供。因此,随着可再生能源利用率的提高,对储能的需求也在上升,并解决随之而来的困难。卡诺电池是少数几个地理上独立的长时间存储可能性之一。卡诺-电池中使用的热能储存方式多种多样,从两罐或单罐温跃层储存的液态熔盐储存,到采用封装PCM或天然固体材料(如岩石)的填充床配置。储存材料是水和岩石,它们在自然界中大量存在,对环境几乎没有直接影响。天然岩石比水具有更大的工作温度范围,因此适用于更广泛的应用。一种可能用于热能储存的天然岩石是火山物质玄武岩。在这项实验工作中,玄武岩在以铸造形式在发电厂用作烟道后进行了分析,重点研究了其储能应用的性能。使用这种产品可以使原本不再有用的剩余产品得到再利用,并提供一种储存材料,而无需从大自然中获取。介绍了回收该产品达到全部潜在热容速度的实验研究。玄武岩样品和玄武岩产物在300 ~ 750℃的不同温度下进行分析。此外,空气冷却(从这些温度降至100°C)和表面结构变化进行了评估。洞察重要的边界条件的就业作为存储材料给出。在未来的工作中,预计将利用这些结果作为玄武岩产品装药模型及其验证的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Speed Of Reaching The Full Potential Heat Capacity Of A Basalt Product: Experimental Results
Renewable Energy Sources naturally deliver energy intermittently, causing fluctuations in energy supply. The energy is therefore also not provided corresponding to the actual need, but according to the availability. Hence, the demand for energy storage is rising with the increasing utilization of renewable energy sources, tackling the difficulties coming along with it. Carnot-Batteries are one out of a few geographically independent storage possibilities for longer durations. The thermal energy storages employed in Carnot-Batteries vary from liquid molten salt storage with two-tanks or single-tank thermocline storage to packed bed configurations with encapsulated PCM or natural solid materials, like rocks. Storage materials, which are found plenty in nature, having nearly no direct impact on the environment, are water and rocks. Natural Rocks offer a greater temperature span for operation than water and are therefore suitable for a wider range of applications. A possible natural rock for use in thermal energy storage is volcanic material basalt. In this experimental work, basalt, after its usage in cast form as flue pipes in a power plant, is analyzed, focusing on its properties for energy storage applications. Using this product would offer the reuse of an otherwise not anymore useful, leftover product and provide a storage material without the need of taking it from nature. The experimental research to retrieve the speed of reaching the full potential heat capacity of this product is described. The samples of basalt and the basalt product are analyzed at different temperatures from 300°C to 750°C. Additionally, air cooling, from these temperatures down to 100°C, and surface structure changes are evaluated. Insights into important boundary conditions for employment as storage material are given. In future work, it is anticipated to use these results as the base for a charging model of the basalt product and its validation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信