G. Cong, N. Yamamoto, Takashi Inoue, Y. Maegami, M. Ohno, M. Okano, S. Namiki, K. Yamada
{"title":"基于干涉仪的光子电路分类器在不使用非线性激活函数的情况下,对知名虹膜数据集显示了>90%的准确率","authors":"G. Cong, N. Yamamoto, Takashi Inoue, Y. Maegami, M. Ohno, M. Okano, S. Namiki, K. Yamada","doi":"10.1364/ofc.2020.w3a.6","DOIUrl":null,"url":null,"abstract":"We demonstrate that interferometer-based photonic circuits can perform classification by only phase control even without activation functions, which can classify well-known Iris dataset with >90% accuracy in simulation, showing simple photonic implementation for machine learning.","PeriodicalId":173355,"journal":{"name":"2020 Optical Fiber Communications Conference and Exhibition (OFC)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Interferometer-Based Photonic Circuit Classifier Showing >90% Accuracy for Well-Known Iris Dataset without Utilizing Nonlinear Activation Function\",\"authors\":\"G. Cong, N. Yamamoto, Takashi Inoue, Y. Maegami, M. Ohno, M. Okano, S. Namiki, K. Yamada\",\"doi\":\"10.1364/ofc.2020.w3a.6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We demonstrate that interferometer-based photonic circuits can perform classification by only phase control even without activation functions, which can classify well-known Iris dataset with >90% accuracy in simulation, showing simple photonic implementation for machine learning.\",\"PeriodicalId\":173355,\"journal\":{\"name\":\"2020 Optical Fiber Communications Conference and Exhibition (OFC)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 Optical Fiber Communications Conference and Exhibition (OFC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1364/ofc.2020.w3a.6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Optical Fiber Communications Conference and Exhibition (OFC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/ofc.2020.w3a.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Interferometer-Based Photonic Circuit Classifier Showing >90% Accuracy for Well-Known Iris Dataset without Utilizing Nonlinear Activation Function
We demonstrate that interferometer-based photonic circuits can perform classification by only phase control even without activation functions, which can classify well-known Iris dataset with >90% accuracy in simulation, showing simple photonic implementation for machine learning.