基于LDA的联合主题N-Gram语言模型

Xiaojun Lin, Dan Li, Xihong Wu
{"title":"基于LDA的联合主题N-Gram语言模型","authors":"Xiaojun Lin, Dan Li, Xihong Wu","doi":"10.1109/IWISA.2010.5473439","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel joint topical n-gram language model that combines the semantic topic information with local constraints in the training procedure. Instead of training the n-gram language model and topic model independently, we estimate the joint probability of latent semantic topic and n-gram directly. In this procedure Latent Dirichlet allocation (LDA) is employed to compute latent topic distributions for sentence instances. Not only does our model capture the long-range dependencies, it also distinguishes the probability distribution of each n-gram in different topics without leading to the problem of data sparseness. Experiments show that our model can lower the perplexity significantly and it is robust on topic numbers and training data scales.","PeriodicalId":298764,"journal":{"name":"2010 2nd International Workshop on Intelligent Systems and Applications","volume":"189 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Joint Topical N-Gram Language Model Based on LDA\",\"authors\":\"Xiaojun Lin, Dan Li, Xihong Wu\",\"doi\":\"10.1109/IWISA.2010.5473439\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a novel joint topical n-gram language model that combines the semantic topic information with local constraints in the training procedure. Instead of training the n-gram language model and topic model independently, we estimate the joint probability of latent semantic topic and n-gram directly. In this procedure Latent Dirichlet allocation (LDA) is employed to compute latent topic distributions for sentence instances. Not only does our model capture the long-range dependencies, it also distinguishes the probability distribution of each n-gram in different topics without leading to the problem of data sparseness. Experiments show that our model can lower the perplexity significantly and it is robust on topic numbers and training data scales.\",\"PeriodicalId\":298764,\"journal\":{\"name\":\"2010 2nd International Workshop on Intelligent Systems and Applications\",\"volume\":\"189 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 2nd International Workshop on Intelligent Systems and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWISA.2010.5473439\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 2nd International Workshop on Intelligent Systems and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWISA.2010.5473439","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们提出了一种新的联合主题n-gram语言模型,该模型将语义主题信息与训练过程中的局部约束相结合。我们不是单独训练n-gram语言模型和主题模型,而是直接估计潜在语义主题和n-gram的联合概率。在这个过程中,使用潜在狄利克雷分配(Latent Dirichlet allocation, LDA)来计算句子实例的潜在主题分布。我们的模型不仅捕获了长期依赖关系,还区分了不同主题中每个n-gram的概率分布,而不会导致数据稀疏问题。实验表明,该模型可以显著降低困惑度,并且在主题数和训练数据规模上具有鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Joint Topical N-Gram Language Model Based on LDA
In this paper, we propose a novel joint topical n-gram language model that combines the semantic topic information with local constraints in the training procedure. Instead of training the n-gram language model and topic model independently, we estimate the joint probability of latent semantic topic and n-gram directly. In this procedure Latent Dirichlet allocation (LDA) is employed to compute latent topic distributions for sentence instances. Not only does our model capture the long-range dependencies, it also distinguishes the probability distribution of each n-gram in different topics without leading to the problem of data sparseness. Experiments show that our model can lower the perplexity significantly and it is robust on topic numbers and training data scales.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信