一种基于构件的条件随机场在线手写藏文识别方法

Long-Long Ma, Jian Wu
{"title":"一种基于构件的条件随机场在线手写藏文识别方法","authors":"Long-Long Ma, Jian Wu","doi":"10.1109/ICFHR.2012.153","DOIUrl":null,"url":null,"abstract":"This paper presents a new component-based recognition method using conditional random field (CRF) for on-line handwritten Tibetan characters. The character pattern is over-segmented into a sequence of sub-structure blocks. Integrated segmentation and recognition method based on the CRF model is used to determine the component segmentation points from these block sequences. The CRF model combines component shape likelihood with geometrical likelihood. The parameters are learned using an energy minimization method. We build a component-based spelling rule model to ensure the correct component appearing at a specific structural position. A character-component generation model is presented to reduce component recognition error rate and accelerate the recognition process. Experimental results on MRG-OHTC database show that the proposed method gives promising performance comparing with the holistic method and the component-based conventional path evaluation method.","PeriodicalId":291062,"journal":{"name":"2012 International Conference on Frontiers in Handwriting Recognition","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"A Component-Based On-Line Handwritten Tibetan Character Recognition Method Using Conditional Random Field\",\"authors\":\"Long-Long Ma, Jian Wu\",\"doi\":\"10.1109/ICFHR.2012.153\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a new component-based recognition method using conditional random field (CRF) for on-line handwritten Tibetan characters. The character pattern is over-segmented into a sequence of sub-structure blocks. Integrated segmentation and recognition method based on the CRF model is used to determine the component segmentation points from these block sequences. The CRF model combines component shape likelihood with geometrical likelihood. The parameters are learned using an energy minimization method. We build a component-based spelling rule model to ensure the correct component appearing at a specific structural position. A character-component generation model is presented to reduce component recognition error rate and accelerate the recognition process. Experimental results on MRG-OHTC database show that the proposed method gives promising performance comparing with the holistic method and the component-based conventional path evaluation method.\",\"PeriodicalId\":291062,\"journal\":{\"name\":\"2012 International Conference on Frontiers in Handwriting Recognition\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 International Conference on Frontiers in Handwriting Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICFHR.2012.153\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Frontiers in Handwriting Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICFHR.2012.153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

提出了一种基于条件随机场(CRF)的在线藏文手写体构件识别方法。字符模式被过度分割成一系列的子结构块。采用基于CRF模型的综合分割与识别方法,从这些块序列中确定各分量的分割点。CRF模型将构件形状似然与几何似然相结合。使用能量最小化方法学习参数。我们构建一个基于组件的拼写规则模型,以确保正确的组件出现在特定的结构位置。为了降低成分识别错误率,加快识别速度,提出了字符-成分生成模型。在MRG-OHTC数据库上的实验结果表明,与整体路径评价方法和基于组件的传统路径评价方法相比,该方法具有良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Component-Based On-Line Handwritten Tibetan Character Recognition Method Using Conditional Random Field
This paper presents a new component-based recognition method using conditional random field (CRF) for on-line handwritten Tibetan characters. The character pattern is over-segmented into a sequence of sub-structure blocks. Integrated segmentation and recognition method based on the CRF model is used to determine the component segmentation points from these block sequences. The CRF model combines component shape likelihood with geometrical likelihood. The parameters are learned using an energy minimization method. We build a component-based spelling rule model to ensure the correct component appearing at a specific structural position. A character-component generation model is presented to reduce component recognition error rate and accelerate the recognition process. Experimental results on MRG-OHTC database show that the proposed method gives promising performance comparing with the holistic method and the component-based conventional path evaluation method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信