物联网中的不当行为检测:一种网络编码感知的统计方法

A. Antonopoulos, C. Verikoukis
{"title":"物联网中的不当行为检测:一种网络编码感知的统计方法","authors":"A. Antonopoulos, C. Verikoukis","doi":"10.1109/INDIN.2016.7819313","DOIUrl":null,"url":null,"abstract":"In the Internet of Things (IoT) context, the massive proliferation of wireless devices implies dense networks that require cooperation for the multihop transmission of the sensor data to central units. The altruistic user behavior and the isolation of malicious users are fundamental requirements for the proper operation of any cooperative network. However, the introduction of new communication techniques that improve the cooperative performance (e.g., network coding) hinders the application of traditional schemes on malicious users detection, which are mainly based on packet overhearing. In this paper, we introduce a non-parametric statistical approach, based on the Kruskal-Wallis method, for the detection of user misbehavior in network coding scenarios. The proposed method is shown to effectively handle attacks in the network, even when malicious users adopt a smart probabilistic misbehavior.","PeriodicalId":421680,"journal":{"name":"2016 IEEE 14th International Conference on Industrial Informatics (INDIN)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Misbehavior detection in the Internet of Things: A network-coding-aware statistical approach\",\"authors\":\"A. Antonopoulos, C. Verikoukis\",\"doi\":\"10.1109/INDIN.2016.7819313\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the Internet of Things (IoT) context, the massive proliferation of wireless devices implies dense networks that require cooperation for the multihop transmission of the sensor data to central units. The altruistic user behavior and the isolation of malicious users are fundamental requirements for the proper operation of any cooperative network. However, the introduction of new communication techniques that improve the cooperative performance (e.g., network coding) hinders the application of traditional schemes on malicious users detection, which are mainly based on packet overhearing. In this paper, we introduce a non-parametric statistical approach, based on the Kruskal-Wallis method, for the detection of user misbehavior in network coding scenarios. The proposed method is shown to effectively handle attacks in the network, even when malicious users adopt a smart probabilistic misbehavior.\",\"PeriodicalId\":421680,\"journal\":{\"name\":\"2016 IEEE 14th International Conference on Industrial Informatics (INDIN)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 14th International Conference on Industrial Informatics (INDIN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INDIN.2016.7819313\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 14th International Conference on Industrial Informatics (INDIN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDIN.2016.7819313","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

在物联网(IoT)环境中,无线设备的大量扩散意味着密集的网络,需要合作将传感器数据多跳传输到中心单元。用户的利他行为和对恶意用户的隔离是任何合作网络正常运行的基本要求。然而,新的通信技术的引入提高了合作性能(如网络编码),阻碍了传统的基于数据包侦听的恶意用户检测方案的应用。在本文中,我们介绍了一种基于Kruskal-Wallis方法的非参数统计方法,用于检测网络编码场景中的用户不当行为。结果表明,该方法可以有效地处理网络中的攻击,即使恶意用户采用了智能概率错误行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Misbehavior detection in the Internet of Things: A network-coding-aware statistical approach
In the Internet of Things (IoT) context, the massive proliferation of wireless devices implies dense networks that require cooperation for the multihop transmission of the sensor data to central units. The altruistic user behavior and the isolation of malicious users are fundamental requirements for the proper operation of any cooperative network. However, the introduction of new communication techniques that improve the cooperative performance (e.g., network coding) hinders the application of traditional schemes on malicious users detection, which are mainly based on packet overhearing. In this paper, we introduce a non-parametric statistical approach, based on the Kruskal-Wallis method, for the detection of user misbehavior in network coding scenarios. The proposed method is shown to effectively handle attacks in the network, even when malicious users adopt a smart probabilistic misbehavior.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信