英越英统计机器翻译中词义消歧方法研究

Quy T. Nguyen, An Nguyen, Dinh Dien
{"title":"英越英统计机器翻译中词义消歧方法研究","authors":"Quy T. Nguyen, An Nguyen, Dinh Dien","doi":"10.1109/rivf.2012.6169839","DOIUrl":null,"url":null,"abstract":"The most difficult problem of machine translation (MT) in general and statistical machine translation (SMT) in particular is to select the correct meaning of the polysemous words. Their correct meaning mainly depends on the context and the topic of the text. Therefore, to improve the quality of SMT by resolving semantic ambiguity of words, we integrate more knowledge about the topic of the text, part-of-speech (POS) and morphology. We applied this model to English-Vietnamese- English SMT system and BLEU scores increased over 6% compared with the baseline general SMT system, which was not integrated information about the topic or other language knowledge.","PeriodicalId":115212,"journal":{"name":"2012 IEEE RIVF International Conference on Computing & Communication Technologies, Research, Innovation, and Vision for the Future","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"An Approach to Word Sense Disambiguation in English-Vietnamese-English Statistical Machine Translation\",\"authors\":\"Quy T. Nguyen, An Nguyen, Dinh Dien\",\"doi\":\"10.1109/rivf.2012.6169839\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The most difficult problem of machine translation (MT) in general and statistical machine translation (SMT) in particular is to select the correct meaning of the polysemous words. Their correct meaning mainly depends on the context and the topic of the text. Therefore, to improve the quality of SMT by resolving semantic ambiguity of words, we integrate more knowledge about the topic of the text, part-of-speech (POS) and morphology. We applied this model to English-Vietnamese- English SMT system and BLEU scores increased over 6% compared with the baseline general SMT system, which was not integrated information about the topic or other language knowledge.\",\"PeriodicalId\":115212,\"journal\":{\"name\":\"2012 IEEE RIVF International Conference on Computing & Communication Technologies, Research, Innovation, and Vision for the Future\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE RIVF International Conference on Computing & Communication Technologies, Research, Innovation, and Vision for the Future\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/rivf.2012.6169839\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE RIVF International Conference on Computing & Communication Technologies, Research, Innovation, and Vision for the Future","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/rivf.2012.6169839","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

一般机器翻译,特别是统计机器翻译中最困难的问题是多义词的正确意义选择。它们的正确含义主要取决于上下文和文本的主题。因此,为了通过解决词的语义歧义来提高SMT的质量,我们需要整合更多关于文本主题、词性和词法的知识。我们将该模型应用于英语-越南语-英语SMT系统,与基线通用SMT系统相比,BLEU分数提高了6%以上,后者没有集成有关主题或其他语言知识的信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Approach to Word Sense Disambiguation in English-Vietnamese-English Statistical Machine Translation
The most difficult problem of machine translation (MT) in general and statistical machine translation (SMT) in particular is to select the correct meaning of the polysemous words. Their correct meaning mainly depends on the context and the topic of the text. Therefore, to improve the quality of SMT by resolving semantic ambiguity of words, we integrate more knowledge about the topic of the text, part-of-speech (POS) and morphology. We applied this model to English-Vietnamese- English SMT system and BLEU scores increased over 6% compared with the baseline general SMT system, which was not integrated information about the topic or other language knowledge.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信