优化PET喷墨打印无芯片RFID传感器的打印层数

Enrico Zanazzi, Giada Marchi, V. Mulloni, M. Donelli, L. Lorenzelli
{"title":"优化PET喷墨打印无芯片RFID传感器的打印层数","authors":"Enrico Zanazzi, Giada Marchi, V. Mulloni, M. Donelli, L. Lorenzelli","doi":"10.1109/fleps53764.2022.9781546","DOIUrl":null,"url":null,"abstract":"This paper presents a preliminary optimization study of the performance of conductive resonators inkjet-printed on polyethylene terephthalate (PET) with an increasing number of printed layers in a range 1-20 layers. Samples were tested and the amplitude of the frequency response was demonstrated to follow a power function with the increasing number of layers. Results indicate that with only 2 printed layers the signal intensity approaches 70% of the maximum intensity obtained with the highest number of layers (20), and that with 5 printed layers the signal reaches 83%. This demonstrates that only few deposited layers can be considered a good compromise for the production of Radio-Frequency IDentification (RFID) resonators by inkjet-printing on PET. Finally, the selected sample was tested as a chipless humidity sensor in a configuration with a 150µm-thick Nafion 117 sensitive material.","PeriodicalId":221424,"journal":{"name":"2022 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Optimizing the number of printed layers in a PET inkjet-printed chipless RFID sensor\",\"authors\":\"Enrico Zanazzi, Giada Marchi, V. Mulloni, M. Donelli, L. Lorenzelli\",\"doi\":\"10.1109/fleps53764.2022.9781546\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a preliminary optimization study of the performance of conductive resonators inkjet-printed on polyethylene terephthalate (PET) with an increasing number of printed layers in a range 1-20 layers. Samples were tested and the amplitude of the frequency response was demonstrated to follow a power function with the increasing number of layers. Results indicate that with only 2 printed layers the signal intensity approaches 70% of the maximum intensity obtained with the highest number of layers (20), and that with 5 printed layers the signal reaches 83%. This demonstrates that only few deposited layers can be considered a good compromise for the production of Radio-Frequency IDentification (RFID) resonators by inkjet-printing on PET. Finally, the selected sample was tested as a chipless humidity sensor in a configuration with a 150µm-thick Nafion 117 sensitive material.\",\"PeriodicalId\":221424,\"journal\":{\"name\":\"2022 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/fleps53764.2022.9781546\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/fleps53764.2022.9781546","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文对聚对苯二甲酸乙二醇酯(PET)喷墨打印导电谐振器的性能进行了初步优化研究,并在1-20层的范围内增加了打印层数。对样品进行了测试,并证明了频率响应的幅度随层数的增加而服从幂函数。结果表明,仅打印2层时,信号强度接近层数最多(20层)时最大强度的70%,打印5层时信号强度达到83%。这表明,只有很少的沉积层可以被认为是一个很好的妥协,为生产射频识别(RFID)谐振器通过喷墨打印在PET上。最后,将选定的样品作为无芯片湿度传感器,在150 μ m厚的Nafion 117敏感材料配置中进行测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimizing the number of printed layers in a PET inkjet-printed chipless RFID sensor
This paper presents a preliminary optimization study of the performance of conductive resonators inkjet-printed on polyethylene terephthalate (PET) with an increasing number of printed layers in a range 1-20 layers. Samples were tested and the amplitude of the frequency response was demonstrated to follow a power function with the increasing number of layers. Results indicate that with only 2 printed layers the signal intensity approaches 70% of the maximum intensity obtained with the highest number of layers (20), and that with 5 printed layers the signal reaches 83%. This demonstrates that only few deposited layers can be considered a good compromise for the production of Radio-Frequency IDentification (RFID) resonators by inkjet-printing on PET. Finally, the selected sample was tested as a chipless humidity sensor in a configuration with a 150µm-thick Nafion 117 sensitive material.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信