分布广义图着色

Juha-Matti Koljonen, M. Alava, M. Peltomäki, O. Tirkkonen
{"title":"分布广义图着色","authors":"Juha-Matti Koljonen, M. Alava, M. Peltomäki, O. Tirkkonen","doi":"10.1109/SASO.2010.10","DOIUrl":null,"url":null,"abstract":"We consider generalized coloring of a weighted graph in a distributed setting, where each node in the graph is represented by an independent agent. The target is to minimize the weight of edges connecting same-color nodes. To avoid getting stuck in a not-too-good local optimum, we approach this problem by finding the colorable sub graph with the maximum weight subset of edges. The agents run a basic distributed graph coloring algorithm, and an algorithm for adding and removing edges, operating on different time scales. As basic distributed algorithms to color graphs we use distributed local search algorithms enabling plateau walks, together with a noise strategy to escape local minima. We evaluate performance in a setting inspired by self-organized resource allocation in a wireless network, and show that a distributed algorithm finding a colorable sub graph can outperform distributed greedy local search. As a related sub-problem, we investigate a procedure of adding edges to random planar graphs, keeping the color ability.","PeriodicalId":370044,"journal":{"name":"2010 Fourth IEEE International Conference on Self-Adaptive and Self-Organizing Systems","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Distributed Generalized Graph Coloring\",\"authors\":\"Juha-Matti Koljonen, M. Alava, M. Peltomäki, O. Tirkkonen\",\"doi\":\"10.1109/SASO.2010.10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider generalized coloring of a weighted graph in a distributed setting, where each node in the graph is represented by an independent agent. The target is to minimize the weight of edges connecting same-color nodes. To avoid getting stuck in a not-too-good local optimum, we approach this problem by finding the colorable sub graph with the maximum weight subset of edges. The agents run a basic distributed graph coloring algorithm, and an algorithm for adding and removing edges, operating on different time scales. As basic distributed algorithms to color graphs we use distributed local search algorithms enabling plateau walks, together with a noise strategy to escape local minima. We evaluate performance in a setting inspired by self-organized resource allocation in a wireless network, and show that a distributed algorithm finding a colorable sub graph can outperform distributed greedy local search. As a related sub-problem, we investigate a procedure of adding edges to random planar graphs, keeping the color ability.\",\"PeriodicalId\":370044,\"journal\":{\"name\":\"2010 Fourth IEEE International Conference on Self-Adaptive and Self-Organizing Systems\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Fourth IEEE International Conference on Self-Adaptive and Self-Organizing Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SASO.2010.10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Fourth IEEE International Conference on Self-Adaptive and Self-Organizing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SASO.2010.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

我们考虑分布式设置下加权图的广义着色问题,其中图中的每个节点由一个独立的代理表示。目标是最小化连接同色节点的边的权重。为了避免陷入不太好的局部最优,我们通过寻找具有最大权重边子集的可着色子图来解决这个问题。代理运行一个基本的分布式图着色算法,以及一个在不同时间尺度上操作的添加和删除边缘的算法。作为着色图的基本分布式算法,我们使用支持高原行走的分布式局部搜索算法,以及避免局部最小值的噪声策略。我们评估了无线网络中自组织资源分配的性能,并证明了一种寻找可着色子图的分布式算法优于分布式贪婪局部搜索。作为一个相关的子问题,我们研究了在保持颜色能力的情况下给随机平面图添加边的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Distributed Generalized Graph Coloring
We consider generalized coloring of a weighted graph in a distributed setting, where each node in the graph is represented by an independent agent. The target is to minimize the weight of edges connecting same-color nodes. To avoid getting stuck in a not-too-good local optimum, we approach this problem by finding the colorable sub graph with the maximum weight subset of edges. The agents run a basic distributed graph coloring algorithm, and an algorithm for adding and removing edges, operating on different time scales. As basic distributed algorithms to color graphs we use distributed local search algorithms enabling plateau walks, together with a noise strategy to escape local minima. We evaluate performance in a setting inspired by self-organized resource allocation in a wireless network, and show that a distributed algorithm finding a colorable sub graph can outperform distributed greedy local search. As a related sub-problem, we investigate a procedure of adding edges to random planar graphs, keeping the color ability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信