双环D维统一性和双共形对称性

Z. Bern, Michael Enciso, H. Ita, M. Zeng
{"title":"双环D维统一性和双共形对称性","authors":"Z. Bern, Michael Enciso, H. Ita, M. Zeng","doi":"10.22323/1.303.0084","DOIUrl":null,"url":null,"abstract":"In this talk we show that dual conformal symmetry has unexpected applications to Feynman integrals in dimensional regularization. Outside $4$ dimensions, the symmetry is anomalous, but still preserves the unitarity cut surfaces. This generally leads to differential equations whose RHS is proportional to $(d-4)$ and has no doubled propagators. The stabilizer subgroup of the conformal group leads to integration-by-parts (IBP) relations without doubled propagators. The above picture also suggested hints that led us to find a nonplanar analog of dual conformal symmetry.","PeriodicalId":140132,"journal":{"name":"Proceedings of Loops and Legs in Quantum Field Theory — PoS(LL2018)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Two-loop $D$-dimensional unitarity and dual-conformal symmetry\",\"authors\":\"Z. Bern, Michael Enciso, H. Ita, M. Zeng\",\"doi\":\"10.22323/1.303.0084\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this talk we show that dual conformal symmetry has unexpected applications to Feynman integrals in dimensional regularization. Outside $4$ dimensions, the symmetry is anomalous, but still preserves the unitarity cut surfaces. This generally leads to differential equations whose RHS is proportional to $(d-4)$ and has no doubled propagators. The stabilizer subgroup of the conformal group leads to integration-by-parts (IBP) relations without doubled propagators. The above picture also suggested hints that led us to find a nonplanar analog of dual conformal symmetry.\",\"PeriodicalId\":140132,\"journal\":{\"name\":\"Proceedings of Loops and Legs in Quantum Field Theory — PoS(LL2018)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of Loops and Legs in Quantum Field Theory — PoS(LL2018)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22323/1.303.0084\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Loops and Legs in Quantum Field Theory — PoS(LL2018)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22323/1.303.0084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在这个演讲中,我们展示了对偶共形对称在维度正则化中的费曼积分中有意想不到的应用。在$4$维之外,对称性是反常的,但仍然保留了统一的切割表面。这通常导致微分方程的RHS与$(d-4)$成比例,并且没有双重传播子。保形群的稳定子群导致了不含双传播子的分部积分关系。上面的图片也暗示了我们找到对偶共形对称的非平面模拟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Two-loop $D$-dimensional unitarity and dual-conformal symmetry
In this talk we show that dual conformal symmetry has unexpected applications to Feynman integrals in dimensional regularization. Outside $4$ dimensions, the symmetry is anomalous, but still preserves the unitarity cut surfaces. This generally leads to differential equations whose RHS is proportional to $(d-4)$ and has no doubled propagators. The stabilizer subgroup of the conformal group leads to integration-by-parts (IBP) relations without doubled propagators. The above picture also suggested hints that led us to find a nonplanar analog of dual conformal symmetry.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信