L. D. Leonardo, Mircea Popescu, M. Tursini, M. Villani
{"title":"牵引用感应电动机驱动的有限元模型联合仿真","authors":"L. D. Leonardo, Mircea Popescu, M. Tursini, M. Villani","doi":"10.1109/IECON.2019.8926853","DOIUrl":null,"url":null,"abstract":"This paper presents the results obtained by the finite elements model co-simulation technique in the transient analysis of an electric drive for advanced traction applications. The case study refers to a 200kW induction motor drive designed for a premium electric vehicle in the frame of the Horizon 2020 “ReFreeDrive” project (Rare earth Free e-Drives featuring low cost manufacturing). The transient performance and the operating limits are evaluated when a field-oriented control strategy based on the lumped parameters model of the machine is used. The co-simulation involves the ANSYS/Simplorer and MATLAB/Simulink environments. The finite element motor model developed in ANSYS is controlled by the rotor flux-oriented controller with axes decoupling built in Simulink. A lumped parameters motor model is also derived to design the control parameters and implemented in Simulink for comparison respect to the co-simulation approach. The results highlight the influence of the controller detuning for the correct prediction of the voltage limit operation at steady state.","PeriodicalId":187719,"journal":{"name":"IECON 2019 - 45th Annual Conference of the IEEE Industrial Electronics Society","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Finite Elements Model Co-Simulation of an Induction Motor Drive for Traction Application\",\"authors\":\"L. D. Leonardo, Mircea Popescu, M. Tursini, M. Villani\",\"doi\":\"10.1109/IECON.2019.8926853\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the results obtained by the finite elements model co-simulation technique in the transient analysis of an electric drive for advanced traction applications. The case study refers to a 200kW induction motor drive designed for a premium electric vehicle in the frame of the Horizon 2020 “ReFreeDrive” project (Rare earth Free e-Drives featuring low cost manufacturing). The transient performance and the operating limits are evaluated when a field-oriented control strategy based on the lumped parameters model of the machine is used. The co-simulation involves the ANSYS/Simplorer and MATLAB/Simulink environments. The finite element motor model developed in ANSYS is controlled by the rotor flux-oriented controller with axes decoupling built in Simulink. A lumped parameters motor model is also derived to design the control parameters and implemented in Simulink for comparison respect to the co-simulation approach. The results highlight the influence of the controller detuning for the correct prediction of the voltage limit operation at steady state.\",\"PeriodicalId\":187719,\"journal\":{\"name\":\"IECON 2019 - 45th Annual Conference of the IEEE Industrial Electronics Society\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IECON 2019 - 45th Annual Conference of the IEEE Industrial Electronics Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IECON.2019.8926853\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IECON 2019 - 45th Annual Conference of the IEEE Industrial Electronics Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IECON.2019.8926853","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Finite Elements Model Co-Simulation of an Induction Motor Drive for Traction Application
This paper presents the results obtained by the finite elements model co-simulation technique in the transient analysis of an electric drive for advanced traction applications. The case study refers to a 200kW induction motor drive designed for a premium electric vehicle in the frame of the Horizon 2020 “ReFreeDrive” project (Rare earth Free e-Drives featuring low cost manufacturing). The transient performance and the operating limits are evaluated when a field-oriented control strategy based on the lumped parameters model of the machine is used. The co-simulation involves the ANSYS/Simplorer and MATLAB/Simulink environments. The finite element motor model developed in ANSYS is controlled by the rotor flux-oriented controller with axes decoupling built in Simulink. A lumped parameters motor model is also derived to design the control parameters and implemented in Simulink for comparison respect to the co-simulation approach. The results highlight the influence of the controller detuning for the correct prediction of the voltage limit operation at steady state.