基于广义高斯密度模型的乐器分类

M. E. Ozbek, F. A. Savaci
{"title":"基于广义高斯密度模型的乐器分类","authors":"M. E. Ozbek, F. A. Savaci","doi":"10.1109/SIU.2007.4298635","DOIUrl":null,"url":null,"abstract":"In this work, subband coefficients obtained from one dimensional wavelet decomposition of isolated note samples of different instruments has been modeled using generalized Gaussian density. By using only model parameters, the classification of music instruments has been done by calculating the Kullback-Leibler divergence between two different densities. The effect of different mother wavelet functions used in wavelet decomposition has also been investigated.","PeriodicalId":315147,"journal":{"name":"2007 IEEE 15th Signal Processing and Communications Applications","volume":"151 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Music Instrument Classification Using Generalized Gaussian Density Modeling\",\"authors\":\"M. E. Ozbek, F. A. Savaci\",\"doi\":\"10.1109/SIU.2007.4298635\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, subband coefficients obtained from one dimensional wavelet decomposition of isolated note samples of different instruments has been modeled using generalized Gaussian density. By using only model parameters, the classification of music instruments has been done by calculating the Kullback-Leibler divergence between two different densities. The effect of different mother wavelet functions used in wavelet decomposition has also been investigated.\",\"PeriodicalId\":315147,\"journal\":{\"name\":\"2007 IEEE 15th Signal Processing and Communications Applications\",\"volume\":\"151 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE 15th Signal Processing and Communications Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIU.2007.4298635\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE 15th Signal Processing and Communications Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIU.2007.4298635","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文利用广义高斯密度对不同乐器的孤立音符样本进行一维小波分解,得到子带系数。仅使用模型参数,通过计算两个不同密度之间的Kullback-Leibler散度来完成乐器的分类。研究了不同母小波函数对小波分解的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Music Instrument Classification Using Generalized Gaussian Density Modeling
In this work, subband coefficients obtained from one dimensional wavelet decomposition of isolated note samples of different instruments has been modeled using generalized Gaussian density. By using only model parameters, the classification of music instruments has been done by calculating the Kullback-Leibler divergence between two different densities. The effect of different mother wavelet functions used in wavelet decomposition has also been investigated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信