𝐿^{∞}上的特征值问题:最优性条件、对偶性和与最优传输的关系

Leon Bungert, Yury Korolev
{"title":"𝐿^{∞}上的特征值问题:最优性条件、对偶性和与最优传输的关系","authors":"Leon Bungert, Yury Korolev","doi":"10.1090/cams/11","DOIUrl":null,"url":null,"abstract":"<p>In this article we characterize the <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper L Superscript normal infinity\">\n <mml:semantics>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"normal\">L</mml:mi>\n </mml:mrow>\n <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">\\mathrm {L}^\\infty</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> eigenvalue problem associated to the Rayleigh quotient <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-vertical-bar nabla u double-vertical-bar Subscript normal upper L Sub Superscript normal infinity Baseline slash double-vertical-bar u double-vertical-bar Subscript normal infinity\">\n <mml:semantics>\n <mml:mrow>\n <mml:mo fence=\"true\" stretchy=\"true\" symmetric=\"true\" />\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo fence=\"false\" stretchy=\"false\">‖<!-- ‖ --></mml:mo>\n <mml:mi mathvariant=\"normal\">∇<!-- ∇ --></mml:mi>\n <mml:mi>u</mml:mi>\n <mml:msub>\n <mml:mo fence=\"false\" stretchy=\"false\">‖<!-- ‖ --></mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"normal\">L</mml:mi>\n </mml:mrow>\n <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi>\n </mml:msup>\n </mml:mrow>\n </mml:msub>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-CLOSE\">\n\n </mml:mrow>\n <mml:mo stretchy=\"true\">/</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-OPEN\">\n\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo fence=\"false\" stretchy=\"false\">‖<!-- ‖ --></mml:mo>\n <mml:mi>u</mml:mi>\n <mml:msub>\n <mml:mo fence=\"false\" stretchy=\"false\">‖<!-- ‖ --></mml:mo>\n <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi>\n </mml:msub>\n </mml:mrow>\n <mml:mo fence=\"true\" stretchy=\"true\" symmetric=\"true\" />\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\left .{\\|\\nabla u\\|_{\\mathrm {L}^\\infty }}\\middle /{\\|u\\|_\\infty }\\right .</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and relate it to a divergence-form PDE, similarly to what is known for <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper L Superscript p\">\n <mml:semantics>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"normal\">L</mml:mi>\n </mml:mrow>\n <mml:mi>p</mml:mi>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">\\mathrm {L}^p</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> eigenvalue problems and the <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\">\n <mml:semantics>\n <mml:mi>p</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">p</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-Laplacian for <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p greater-than normal infinity\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>p</mml:mi>\n <mml:mo>></mml:mo>\n <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">p>\\infty</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. Contrary to existing methods, which study <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper L Superscript normal infinity\">\n <mml:semantics>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"normal\">L</mml:mi>\n </mml:mrow>\n <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">\\mathrm {L}^\\infty</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-problems as limits of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper L Superscript p\">\n <mml:semantics>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"normal\">L</mml:mi>\n </mml:mrow>\n <mml:mi>p</mml:mi>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">\\mathrm {L}^p</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-problems for <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p right-arrow normal infinity\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>p</mml:mi>\n <mml:mo stretchy=\"false\">→<!-- → --></mml:mo>\n <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">p\\to \\infty</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, we develop a novel framework for analyzing the limiting problem directly using convex analysis and geometric measure theory. For this, we derive a novel fine characterization of the subdifferential of the Lipschitz-constant-functional <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"u right-arrow from bar double-vertical-bar nabla u double-vertical-bar Subscript normal upper L Sub Superscript normal infinity\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>u</mml:mi>\n <mml:mo stretchy=\"false\">↦<!-- ↦ --></mml:mo>\n <mml:mo fence=\"false\" stretchy=\"false\">‖<!-- ‖ --></mml:mo>\n <mml:mi mathvariant=\"normal\">∇<!-- ∇ --></mml:mi>\n <mml:mi>u</mml:mi>\n <mml:msub>\n <mml:mo fence=\"false\" stretchy=\"false\">‖<!-- ‖ --></mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"normal\">L</mml:mi>\n </mml:mrow>\n <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi>\n </mml:msup>\n </mml:mrow>\n </mml:msub>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">u\\mapsto \\|\\nabla u\\|_{\\mathrm {L}^\\infty }</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. We show that the eigenvalue problem takes the form <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"lamda nu u equals minus d i v left-parenthesis tau nabla Subscript tau Baseline u right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>λ<!-- λ --></mml:mi>\n <mml:mi>ν<!-- ν --></mml:mi>\n <mml:mi>u</mml:mi>\n <mml:mo>=</mml:mo>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mi>div</mml:mi>\n <mml:mo>⁡<!-- ⁡ --></mml:mo>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>τ<!-- τ --></mml:mi>\n <mml:msub>\n <mml:mi mathvariant=\"normal\">∇<!-- ∇ --></mml:mi>\n <mml:mi>τ<!-- τ --></mml:mi>\n </mml:msub>\n <mml:mi>u</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\lambda \\nu u =-\\operatorname {div}(\\tau \\nabla _\\tau u)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, where <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"nu\">\n <mml:semantics>\n <mml:mi>ν<!-- ν --></mml:mi>\n <mml:annotation encoding=\"application/x-tex\">\\nu</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"tau\">\n <mml:semantics>\n <mml:mi>τ<!-- τ --></mml:mi>\n <mml:annotation encoding=\"application/x-tex\">\\tau</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> are non-negative measures concentrated where <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"StartAbsoluteValue u EndAbsoluteValue\">\n <mml:semantics>\n <mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo stretchy=\"false\">|</mml:mo>\n </mml:mrow>\n <mml:mi>u</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo stretchy=\"false\">|</mml:mo>\n </mml:mrow>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">|u|</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> respectively <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"StartAbsoluteValue nabla u EndAbsoluteValue\">\n <mml:semantics>\n <mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo stretchy=\"false\">|</mml:mo>\n </mml:mrow>\n <mml:mi mathvariant=\"normal\">∇<!-- ∇ --></mml:mi>\n <mml:mi>u</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo stretchy=\"false\">|</mml:mo>\n </mml:mrow>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">|\\nabla u|</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> are maximal, and <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"nabla Subscript tau Baseline u\">\n <mml:semantics>\n <mml:mrow>\n <mml:msub>\n <mml:mi mathvariant=\"normal\">∇<!-- ∇ --></mml:mi>\n <mml:mi>τ<!-- τ --></mml:mi>\n </mml:msub>\n <mml:mi>u</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\nabla _\\tau u</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is the tangential gradient of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"u\">\n <mml:semantics>\n <mml:mi>u</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">u</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>","PeriodicalId":285678,"journal":{"name":"Communications of the American Mathematical Society","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Eigenvalue problems in 𝐿^{∞}: optimality conditions, duality, and relations with optimal transport\",\"authors\":\"Leon Bungert, Yury Korolev\",\"doi\":\"10.1090/cams/11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this article we characterize the <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"normal upper L Superscript normal infinity\\\">\\n <mml:semantics>\\n <mml:msup>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"normal\\\">L</mml:mi>\\n </mml:mrow>\\n <mml:mi mathvariant=\\\"normal\\\">∞<!-- ∞ --></mml:mi>\\n </mml:msup>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathrm {L}^\\\\infty</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> eigenvalue problem associated to the Rayleigh quotient <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"double-vertical-bar nabla u double-vertical-bar Subscript normal upper L Sub Superscript normal infinity Baseline slash double-vertical-bar u double-vertical-bar Subscript normal infinity\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mo fence=\\\"true\\\" stretchy=\\\"true\\\" symmetric=\\\"true\\\" />\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">‖<!-- ‖ --></mml:mo>\\n <mml:mi mathvariant=\\\"normal\\\">∇<!-- ∇ --></mml:mi>\\n <mml:mi>u</mml:mi>\\n <mml:msub>\\n <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">‖<!-- ‖ --></mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:msup>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"normal\\\">L</mml:mi>\\n </mml:mrow>\\n <mml:mi mathvariant=\\\"normal\\\">∞<!-- ∞ --></mml:mi>\\n </mml:msup>\\n </mml:mrow>\\n </mml:msub>\\n </mml:mrow>\\n <mml:mrow class=\\\"MJX-TeXAtom-CLOSE\\\">\\n\\n </mml:mrow>\\n <mml:mo stretchy=\\\"true\\\">/</mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-OPEN\\\">\\n\\n </mml:mrow>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">‖<!-- ‖ --></mml:mo>\\n <mml:mi>u</mml:mi>\\n <mml:msub>\\n <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">‖<!-- ‖ --></mml:mo>\\n <mml:mi mathvariant=\\\"normal\\\">∞<!-- ∞ --></mml:mi>\\n </mml:msub>\\n </mml:mrow>\\n <mml:mo fence=\\\"true\\\" stretchy=\\\"true\\\" symmetric=\\\"true\\\" />\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\left .{\\\\|\\\\nabla u\\\\|_{\\\\mathrm {L}^\\\\infty }}\\\\middle /{\\\\|u\\\\|_\\\\infty }\\\\right .</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> and relate it to a divergence-form PDE, similarly to what is known for <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"normal upper L Superscript p\\\">\\n <mml:semantics>\\n <mml:msup>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"normal\\\">L</mml:mi>\\n </mml:mrow>\\n <mml:mi>p</mml:mi>\\n </mml:msup>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathrm {L}^p</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> eigenvalue problems and the <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"p\\\">\\n <mml:semantics>\\n <mml:mi>p</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">p</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-Laplacian for <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"p greater-than normal infinity\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>p</mml:mi>\\n <mml:mo>></mml:mo>\\n <mml:mi mathvariant=\\\"normal\\\">∞<!-- ∞ --></mml:mi>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">p>\\\\infty</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>. Contrary to existing methods, which study <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"normal upper L Superscript normal infinity\\\">\\n <mml:semantics>\\n <mml:msup>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"normal\\\">L</mml:mi>\\n </mml:mrow>\\n <mml:mi mathvariant=\\\"normal\\\">∞<!-- ∞ --></mml:mi>\\n </mml:msup>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathrm {L}^\\\\infty</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-problems as limits of <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"normal upper L Superscript p\\\">\\n <mml:semantics>\\n <mml:msup>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"normal\\\">L</mml:mi>\\n </mml:mrow>\\n <mml:mi>p</mml:mi>\\n </mml:msup>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathrm {L}^p</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-problems for <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"p right-arrow normal infinity\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>p</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">→<!-- → --></mml:mo>\\n <mml:mi mathvariant=\\\"normal\\\">∞<!-- ∞ --></mml:mi>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">p\\\\to \\\\infty</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, we develop a novel framework for analyzing the limiting problem directly using convex analysis and geometric measure theory. For this, we derive a novel fine characterization of the subdifferential of the Lipschitz-constant-functional <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"u right-arrow from bar double-vertical-bar nabla u double-vertical-bar Subscript normal upper L Sub Superscript normal infinity\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>u</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">↦<!-- ↦ --></mml:mo>\\n <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">‖<!-- ‖ --></mml:mo>\\n <mml:mi mathvariant=\\\"normal\\\">∇<!-- ∇ --></mml:mi>\\n <mml:mi>u</mml:mi>\\n <mml:msub>\\n <mml:mo fence=\\\"false\\\" stretchy=\\\"false\\\">‖<!-- ‖ --></mml:mo>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:msup>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"normal\\\">L</mml:mi>\\n </mml:mrow>\\n <mml:mi mathvariant=\\\"normal\\\">∞<!-- ∞ --></mml:mi>\\n </mml:msup>\\n </mml:mrow>\\n </mml:msub>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">u\\\\mapsto \\\\|\\\\nabla u\\\\|_{\\\\mathrm {L}^\\\\infty }</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>. We show that the eigenvalue problem takes the form <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"lamda nu u equals minus d i v left-parenthesis tau nabla Subscript tau Baseline u right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>λ<!-- λ --></mml:mi>\\n <mml:mi>ν<!-- ν --></mml:mi>\\n <mml:mi>u</mml:mi>\\n <mml:mo>=</mml:mo>\\n <mml:mo>−<!-- − --></mml:mo>\\n <mml:mi>div</mml:mi>\\n <mml:mo>⁡<!-- ⁡ --></mml:mo>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>τ<!-- τ --></mml:mi>\\n <mml:msub>\\n <mml:mi mathvariant=\\\"normal\\\">∇<!-- ∇ --></mml:mi>\\n <mml:mi>τ<!-- τ --></mml:mi>\\n </mml:msub>\\n <mml:mi>u</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\lambda \\\\nu u =-\\\\operatorname {div}(\\\\tau \\\\nabla _\\\\tau u)</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, where <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"nu\\\">\\n <mml:semantics>\\n <mml:mi>ν<!-- ν --></mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\nu</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> and <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"tau\\\">\\n <mml:semantics>\\n <mml:mi>τ<!-- τ --></mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\tau</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> are non-negative measures concentrated where <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"StartAbsoluteValue u EndAbsoluteValue\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mo stretchy=\\\"false\\\">|</mml:mo>\\n </mml:mrow>\\n <mml:mi>u</mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mo stretchy=\\\"false\\\">|</mml:mo>\\n </mml:mrow>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">|u|</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> respectively <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"StartAbsoluteValue nabla u EndAbsoluteValue\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mo stretchy=\\\"false\\\">|</mml:mo>\\n </mml:mrow>\\n <mml:mi mathvariant=\\\"normal\\\">∇<!-- ∇ --></mml:mi>\\n <mml:mi>u</mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mo stretchy=\\\"false\\\">|</mml:mo>\\n </mml:mrow>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">|\\\\nabla u|</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> are maximal, and <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"nabla Subscript tau Baseline u\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:msub>\\n <mml:mi mathvariant=\\\"normal\\\">∇<!-- ∇ --></mml:mi>\\n <mml:mi>τ<!-- τ --></mml:mi>\\n </mml:msub>\\n <mml:mi>u</mml:mi>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\nabla _\\\\tau u</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> is the tangential gradient of <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"u\\\">\\n <mml:semantics>\\n <mml:mi>u</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">u</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>\",\"PeriodicalId\":285678,\"journal\":{\"name\":\"Communications of the American Mathematical Society\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications of the American Mathematical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/cams/11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications of the American Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/cams/11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

在本文中,我们描述了与瑞利商相关的L∞\mathrm L{^ }\infty特征值问题‖∇u‖L∞/‖u‖∞\left .{\|\nabla u\|_ {\mathrm L{^ }\infty}}\middle /{\|u\|_\infty}\right。并将其与散度形式的偏微分方程联系起来,类似于已知的L p \mathrm L{^p特征值问题和p>∞p> }\infty的p -拉普拉斯算子。与现有的研究L∞\mathrm L{^ }\infty -问题作为L p的极限\mathrm L{^p -问题对于p→∞p }\to\infty的方法相反,我们开发了一个新的框架来直接利用凸分析和几何测度理论来分析极限问题。为此,我们导出了lipschitz -常数泛函u∈‖∇u‖L∞u \mapsto \| \nabla u\|_ {\mathrm L{^ }\infty的一种新的精细表征}。我们证明了特征值问题的形式为λ ν u =−div(τ∇τ u)\lambda\nu u =- \operatorname div{(}\tau\nabla _ \tau u),其中ν \nu和τ \tau为非负测度,分别集中于|u| |u|∇u| | \nabla u|为最大值,∇τ u \nabla _ \tau u为u u
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Eigenvalue problems in 𝐿^{∞}: optimality conditions, duality, and relations with optimal transport

In this article we characterize the L \mathrm {L}^\infty eigenvalue problem associated to the Rayleigh quotient u L / u \left .{\|\nabla u\|_{\mathrm {L}^\infty }}\middle /{\|u\|_\infty }\right . and relate it to a divergence-form PDE, similarly to what is known for L p \mathrm {L}^p eigenvalue problems and the p p -Laplacian for p > p>\infty . Contrary to existing methods, which study L \mathrm {L}^\infty -problems as limits of L p \mathrm {L}^p -problems for p p\to \infty , we develop a novel framework for analyzing the limiting problem directly using convex analysis and geometric measure theory. For this, we derive a novel fine characterization of the subdifferential of the Lipschitz-constant-functional u u L u\mapsto \|\nabla u\|_{\mathrm {L}^\infty } . We show that the eigenvalue problem takes the form λ ν u = div ( τ τ u ) \lambda \nu u =-\operatorname {div}(\tau \nabla _\tau u) , where ν \nu and τ \tau are non-negative measures concentrated where | u | |u| respectively | u | |\nabla u| are maximal, and τ u \nabla _\tau u is the tangential gradient of u u

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信