平面曲线沿偏移方向的偏移近似

Hongyan Zhao, Hongmei Zhao
{"title":"平面曲线沿偏移方向的偏移近似","authors":"Hongyan Zhao, Hongmei Zhao","doi":"10.1109/ISCID.2011.138","DOIUrl":null,"url":null,"abstract":"This paper proposed a wholly new offset approximation method. Based on the improvement of the best rational Chebyshev approximation theory, approximating the offset curve along the offset direction is investigated, and the approximation error is also measured along the offset direction, which could reflect the real approximation effect. Experiments show that the proposed method has advantage of low complexity, high precision, and global error control.","PeriodicalId":224504,"journal":{"name":"2011 Fourth International Symposium on Computational Intelligence and Design","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Offset Approximation Along the Offset Direction for Planar Curve\",\"authors\":\"Hongyan Zhao, Hongmei Zhao\",\"doi\":\"10.1109/ISCID.2011.138\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposed a wholly new offset approximation method. Based on the improvement of the best rational Chebyshev approximation theory, approximating the offset curve along the offset direction is investigated, and the approximation error is also measured along the offset direction, which could reflect the real approximation effect. Experiments show that the proposed method has advantage of low complexity, high precision, and global error control.\",\"PeriodicalId\":224504,\"journal\":{\"name\":\"2011 Fourth International Symposium on Computational Intelligence and Design\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 Fourth International Symposium on Computational Intelligence and Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCID.2011.138\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Fourth International Symposium on Computational Intelligence and Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCID.2011.138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种全新的偏置近似方法。在改进最优有理切比雪夫近似理论的基础上,研究了沿偏移方向逼近偏移曲线,并测量了沿偏移方向的逼近误差,能较好地反映实际逼近效果。实验表明,该方法具有复杂度低、精度高、误差全局控制等优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Offset Approximation Along the Offset Direction for Planar Curve
This paper proposed a wholly new offset approximation method. Based on the improvement of the best rational Chebyshev approximation theory, approximating the offset curve along the offset direction is investigated, and the approximation error is also measured along the offset direction, which could reflect the real approximation effect. Experiments show that the proposed method has advantage of low complexity, high precision, and global error control.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信