中间中心性:算法和实现

Dimitrios Prountzos, K. Pingali
{"title":"中间中心性:算法和实现","authors":"Dimitrios Prountzos, K. Pingali","doi":"10.1145/2442516.2442521","DOIUrl":null,"url":null,"abstract":"Betweenness centrality is an important metric in the study of social networks, and several algorithms for computing this metric exist in the literature. This paper makes three contributions. First, we show that the problem of computing betweenness centrality can be formulated abstractly in terms of a small set of operators that update the graph. Second, we show that existing parallel algorithms for computing betweenness centrality can be viewed as implementations of different schedules for these operators, permitting all these algorithms to be formulated in a single framework. Third, we derive a new asynchronous parallel algorithm for betweenness centrality that (i) works seamlessly for both weighted and unweighted graphs, (ii) can be applied to large graphs, and (iii) is able to extract large amounts of parallelism. We implemented this algorithm and compared it against a number of publicly available implementations of previous algorithms on two different multicore architectures. Our results show that the new algorithm is the best performing one in most cases, particularly for large graphs and large thread counts, and is always competitive against other algorithms.","PeriodicalId":286119,"journal":{"name":"ACM SIGPLAN Symposium on Principles & Practice of Parallel Programming","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"43","resultStr":"{\"title\":\"Betweenness centrality: algorithms and implementations\",\"authors\":\"Dimitrios Prountzos, K. Pingali\",\"doi\":\"10.1145/2442516.2442521\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Betweenness centrality is an important metric in the study of social networks, and several algorithms for computing this metric exist in the literature. This paper makes three contributions. First, we show that the problem of computing betweenness centrality can be formulated abstractly in terms of a small set of operators that update the graph. Second, we show that existing parallel algorithms for computing betweenness centrality can be viewed as implementations of different schedules for these operators, permitting all these algorithms to be formulated in a single framework. Third, we derive a new asynchronous parallel algorithm for betweenness centrality that (i) works seamlessly for both weighted and unweighted graphs, (ii) can be applied to large graphs, and (iii) is able to extract large amounts of parallelism. We implemented this algorithm and compared it against a number of publicly available implementations of previous algorithms on two different multicore architectures. Our results show that the new algorithm is the best performing one in most cases, particularly for large graphs and large thread counts, and is always competitive against other algorithms.\",\"PeriodicalId\":286119,\"journal\":{\"name\":\"ACM SIGPLAN Symposium on Principles & Practice of Parallel Programming\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"43\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM SIGPLAN Symposium on Principles & Practice of Parallel Programming\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2442516.2442521\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGPLAN Symposium on Principles & Practice of Parallel Programming","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2442516.2442521","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 43

摘要

中间性中心性是社会网络研究中的一个重要度量,文献中存在几种计算该度量的算法。本文有三个贡献。首先,我们证明了计算中间性中心性的问题可以抽象地表述为更新图的一小组算子。其次,我们证明了计算中间性中心性的现有并行算法可以被视为这些操作符的不同调度的实现,允许所有这些算法在单个框架中制定。第三,我们推导了一种新的异步并行算法,用于中间性中心性,该算法(i)可以无缝地用于加权和未加权的图,(ii)可以应用于大型图,(iii)能够提取大量的并行性。我们实现了这个算法,并将其与两个不同的多核架构上的许多公开可用的先前算法实现进行了比较。我们的结果表明,在大多数情况下,新算法是性能最好的算法,特别是对于大型图和大型线程数,并且总是与其他算法竞争。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Betweenness centrality: algorithms and implementations
Betweenness centrality is an important metric in the study of social networks, and several algorithms for computing this metric exist in the literature. This paper makes three contributions. First, we show that the problem of computing betweenness centrality can be formulated abstractly in terms of a small set of operators that update the graph. Second, we show that existing parallel algorithms for computing betweenness centrality can be viewed as implementations of different schedules for these operators, permitting all these algorithms to be formulated in a single framework. Third, we derive a new asynchronous parallel algorithm for betweenness centrality that (i) works seamlessly for both weighted and unweighted graphs, (ii) can be applied to large graphs, and (iii) is able to extract large amounts of parallelism. We implemented this algorithm and compared it against a number of publicly available implementations of previous algorithms on two different multicore architectures. Our results show that the new algorithm is the best performing one in most cases, particularly for large graphs and large thread counts, and is always competitive against other algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信