{"title":"完全可度量拓扑空间上的一个普适复结构","authors":"E. Ballico","doi":"10.1080/02781070410001701047","DOIUrl":null,"url":null,"abstract":"Let X be a topological space whose topology may be defined by a complete metric d. Taking all such metrics d we define a universal complex structure on X. For this complex structure the sheaf of germs of holomorphic functions on X coincides with the sheaf of germs of continuous functions on X, and hence the theories of topological and holomorphic vector bundles on X are the same.","PeriodicalId":272508,"journal":{"name":"Complex Variables, Theory and Application: An International Journal","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A universal complex structure on complete metrizable topological spaces\",\"authors\":\"E. Ballico\",\"doi\":\"10.1080/02781070410001701047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let X be a topological space whose topology may be defined by a complete metric d. Taking all such metrics d we define a universal complex structure on X. For this complex structure the sheaf of germs of holomorphic functions on X coincides with the sheaf of germs of continuous functions on X, and hence the theories of topological and holomorphic vector bundles on X are the same.\",\"PeriodicalId\":272508,\"journal\":{\"name\":\"Complex Variables, Theory and Application: An International Journal\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Complex Variables, Theory and Application: An International Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/02781070410001701047\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex Variables, Theory and Application: An International Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/02781070410001701047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A universal complex structure on complete metrizable topological spaces
Let X be a topological space whose topology may be defined by a complete metric d. Taking all such metrics d we define a universal complex structure on X. For this complex structure the sheaf of germs of holomorphic functions on X coincides with the sheaf of germs of continuous functions on X, and hence the theories of topological and holomorphic vector bundles on X are the same.