基于无监督神经网络学习算法的近最优无线数据广播

N. Vlajic, Dimitrios Makrakis, Charalambos Charalambous
{"title":"基于无监督神经网络学习算法的近最优无线数据广播","authors":"N. Vlajic, Dimitrios Makrakis, Charalambos Charalambous","doi":"10.1109/IJCNN.2001.939112","DOIUrl":null,"url":null,"abstract":"Wireless data broadcasting (WDB) is proven to be an efficient information delivery mechanism of nearly unlimited scalability. However, successful performance of a WDB based system is not always guaranteed-it strongly depends on the system's ability to identify the most popular information (documents) among users and accurately estimate their actual request probabilities. In this paper, we argue that a recently proposed unsupervised neural network algorithm possesses the key properties of an ideal estimator of document request probabilities. Obtained simulation results support the theoretical assumptions and suggest a near optimal performance of a WDB based system employing the given algorithm.","PeriodicalId":346955,"journal":{"name":"IJCNN'01. International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Near optimal wireless data broadcasting based on an unsupervised neural network learning algorithm\",\"authors\":\"N. Vlajic, Dimitrios Makrakis, Charalambos Charalambous\",\"doi\":\"10.1109/IJCNN.2001.939112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wireless data broadcasting (WDB) is proven to be an efficient information delivery mechanism of nearly unlimited scalability. However, successful performance of a WDB based system is not always guaranteed-it strongly depends on the system's ability to identify the most popular information (documents) among users and accurately estimate their actual request probabilities. In this paper, we argue that a recently proposed unsupervised neural network algorithm possesses the key properties of an ideal estimator of document request probabilities. Obtained simulation results support the theoretical assumptions and suggest a near optimal performance of a WDB based system employing the given algorithm.\",\"PeriodicalId\":346955,\"journal\":{\"name\":\"IJCNN'01. International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IJCNN'01. International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2001.939112\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IJCNN'01. International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2001.939112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

无线数据广播(WDB)是一种高效的信息传递机制,具有几乎无限的可扩展性。然而,基于WDB的系统的成功性能并不能总是得到保证——它很大程度上取决于系统识别用户中最流行的信息(文档)并准确估计其实际请求概率的能力。在本文中,我们认为最近提出的一种无监督神经网络算法具有文档请求概率理想估计器的关键特性。得到的仿真结果支持了理论假设,并表明采用给定算法的基于WDB的系统具有接近最佳的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Near optimal wireless data broadcasting based on an unsupervised neural network learning algorithm
Wireless data broadcasting (WDB) is proven to be an efficient information delivery mechanism of nearly unlimited scalability. However, successful performance of a WDB based system is not always guaranteed-it strongly depends on the system's ability to identify the most popular information (documents) among users and accurately estimate their actual request probabilities. In this paper, we argue that a recently proposed unsupervised neural network algorithm possesses the key properties of an ideal estimator of document request probabilities. Obtained simulation results support the theoretical assumptions and suggest a near optimal performance of a WDB based system employing the given algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信