E. Lughofer, Eva Weigl, Wolfgang Heidl, C. Eitzinger, Thomas Radauer
{"title":"基于类分解的进化模糊分类器中新类的快速经济集成","authors":"E. Lughofer, Eva Weigl, Wolfgang Heidl, C. Eitzinger, Thomas Radauer","doi":"10.1109/FUZZ-IEEE.2015.7337846","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a fast and economic strategy for the integration of new classes on the fly into evolving fuzzy classifiers (EFC) during data stream mining processes. Fastness addresses the assurance that a newly arising class in the stream can be integrated in a way such that the classifier is able to correctly return the new class after receiving only a few training samples of it. Economic means that the classifier update cycles are decreased to a minimum amount of time, as these require operator's feedback for obtaining the ground truth labels, which are usually costly to obtain. The former is achieved by a class-decomposition approach, which splits up multi-class classification problems into several less imbalanced and less complex binary sub-problems. The latter is achieved by a single-pass active learning selection scheme which selects the most informative samples based on sample-wise criteria. The approach is compared with conventional single model architecture for EFC (EFC-SM) based on two data streams from a real-world application in the field of surface inspection. The comparison shows that the class decomposition approach can significantly reduce the delay of class integration, and this with a lower # of samples used for model updates than EFC-SM.","PeriodicalId":185191,"journal":{"name":"2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Fast and economic integration of new classes on the fly in evolving fuzzy classifiers using class decomposition\",\"authors\":\"E. Lughofer, Eva Weigl, Wolfgang Heidl, C. Eitzinger, Thomas Radauer\",\"doi\":\"10.1109/FUZZ-IEEE.2015.7337846\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a fast and economic strategy for the integration of new classes on the fly into evolving fuzzy classifiers (EFC) during data stream mining processes. Fastness addresses the assurance that a newly arising class in the stream can be integrated in a way such that the classifier is able to correctly return the new class after receiving only a few training samples of it. Economic means that the classifier update cycles are decreased to a minimum amount of time, as these require operator's feedback for obtaining the ground truth labels, which are usually costly to obtain. The former is achieved by a class-decomposition approach, which splits up multi-class classification problems into several less imbalanced and less complex binary sub-problems. The latter is achieved by a single-pass active learning selection scheme which selects the most informative samples based on sample-wise criteria. The approach is compared with conventional single model architecture for EFC (EFC-SM) based on two data streams from a real-world application in the field of surface inspection. The comparison shows that the class decomposition approach can significantly reduce the delay of class integration, and this with a lower # of samples used for model updates than EFC-SM.\",\"PeriodicalId\":185191,\"journal\":{\"name\":\"2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FUZZ-IEEE.2015.7337846\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZ-IEEE.2015.7337846","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fast and economic integration of new classes on the fly in evolving fuzzy classifiers using class decomposition
In this paper, we propose a fast and economic strategy for the integration of new classes on the fly into evolving fuzzy classifiers (EFC) during data stream mining processes. Fastness addresses the assurance that a newly arising class in the stream can be integrated in a way such that the classifier is able to correctly return the new class after receiving only a few training samples of it. Economic means that the classifier update cycles are decreased to a minimum amount of time, as these require operator's feedback for obtaining the ground truth labels, which are usually costly to obtain. The former is achieved by a class-decomposition approach, which splits up multi-class classification problems into several less imbalanced and less complex binary sub-problems. The latter is achieved by a single-pass active learning selection scheme which selects the most informative samples based on sample-wise criteria. The approach is compared with conventional single model architecture for EFC (EFC-SM) based on two data streams from a real-world application in the field of surface inspection. The comparison shows that the class decomposition approach can significantly reduce the delay of class integration, and this with a lower # of samples used for model updates than EFC-SM.