用于因果关系分类的知识增强语言模型

Pedram Hosseini, David A. Broniatowski, Mona T. Diab
{"title":"用于因果关系分类的知识增强语言模型","authors":"Pedram Hosseini, David A. Broniatowski, Mona T. Diab","doi":"10.18653/v1/2022.csrr-1.6","DOIUrl":null,"url":null,"abstract":"Previous studies have shown the efficacy of knowledge augmentation methods in pretrained language models. However, these methods behave differently across domains and downstream tasks. In this work, we investigate the augmentation of pretrained language models with knowledge graph data in the cause-effect relation classification and commonsense causal reasoning tasks. After automatically verbalizing triples in ATOMIC2020, a wide coverage commonsense reasoning knowledge graph, we continually pretrain BERT and evaluate the resulting model on cause-effect pair classification and answering commonsense causal reasoning questions. Our results show that a continually pretrained language model augmented with commonsense reasoning knowledge outperforms our baselines on two commonsense causal reasoning benchmarks, COPA and BCOPA-CE, and a Temporal and Causal Reasoning (TCR) dataset, without additional improvement in model architecture or using quality-enhanced data for fine-tuning.","PeriodicalId":166496,"journal":{"name":"Proceedings of the First Workshop on Commonsense Representation and Reasoning (CSRR 2022)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Knowledge-Augmented Language Models for Cause-Effect Relation Classification\",\"authors\":\"Pedram Hosseini, David A. Broniatowski, Mona T. Diab\",\"doi\":\"10.18653/v1/2022.csrr-1.6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Previous studies have shown the efficacy of knowledge augmentation methods in pretrained language models. However, these methods behave differently across domains and downstream tasks. In this work, we investigate the augmentation of pretrained language models with knowledge graph data in the cause-effect relation classification and commonsense causal reasoning tasks. After automatically verbalizing triples in ATOMIC2020, a wide coverage commonsense reasoning knowledge graph, we continually pretrain BERT and evaluate the resulting model on cause-effect pair classification and answering commonsense causal reasoning questions. Our results show that a continually pretrained language model augmented with commonsense reasoning knowledge outperforms our baselines on two commonsense causal reasoning benchmarks, COPA and BCOPA-CE, and a Temporal and Causal Reasoning (TCR) dataset, without additional improvement in model architecture or using quality-enhanced data for fine-tuning.\",\"PeriodicalId\":166496,\"journal\":{\"name\":\"Proceedings of the First Workshop on Commonsense Representation and Reasoning (CSRR 2022)\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the First Workshop on Commonsense Representation and Reasoning (CSRR 2022)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/2022.csrr-1.6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the First Workshop on Commonsense Representation and Reasoning (CSRR 2022)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2022.csrr-1.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

已有研究表明,知识增强方法在预训练语言模型中的有效性。然而,这些方法在不同领域和下游任务之间的行为是不同的。在这项工作中,我们研究了知识图数据在因果关系分类和常识因果推理任务中对预训练语言模型的增强。在ATOMIC2020(一个广泛覆盖的常识推理知识图)中自动描述三元组后,我们继续预训练BERT,并在因果对分类和回答常识推理问题上评估结果模型。我们的研究结果表明,在两个常识性因果推理基准(COPA和BCOPA-CE)以及时间和因果推理(TCR)数据集上,使用常识推理知识增强的持续预训练语言模型优于我们的基线,而无需对模型架构进行额外改进或使用质量增强的数据进行微调。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Knowledge-Augmented Language Models for Cause-Effect Relation Classification
Previous studies have shown the efficacy of knowledge augmentation methods in pretrained language models. However, these methods behave differently across domains and downstream tasks. In this work, we investigate the augmentation of pretrained language models with knowledge graph data in the cause-effect relation classification and commonsense causal reasoning tasks. After automatically verbalizing triples in ATOMIC2020, a wide coverage commonsense reasoning knowledge graph, we continually pretrain BERT and evaluate the resulting model on cause-effect pair classification and answering commonsense causal reasoning questions. Our results show that a continually pretrained language model augmented with commonsense reasoning knowledge outperforms our baselines on two commonsense causal reasoning benchmarks, COPA and BCOPA-CE, and a Temporal and Causal Reasoning (TCR) dataset, without additional improvement in model architecture or using quality-enhanced data for fine-tuning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信