使用深度扩展随机霍夫森林用于对象检测和定位

R. Palmer, G. West, T. Tan
{"title":"使用深度扩展随机霍夫森林用于对象检测和定位","authors":"R. Palmer, G. West, T. Tan","doi":"10.1109/DICTA.2013.6691536","DOIUrl":null,"url":null,"abstract":"Implicit Shape Models (ISM) have been developed for object detection and localisation in 2-D (RGB) imagery and, to a lesser extent, full 3-D point clouds. Research is ongoing to extend the approach to 2-D imagery having co-registered depth (RGB- D) e.g. from stereoscopy, laser scanning, time-of-flight cameras etc.A popular implementation of the ISM is as a Randomised Forest of classifier trees representing codebooks for use in a Hough Transform voting framework. We present three extensions to the Class-Specific Hough Forest (CSHF) that utilises RGB and co- registered depth imagery acquired via stereoscopic mobile imaging. We demonstrate how depth and RGB information can be combined during training and at detection time. Rather than encoding depth as a new dimension of Hough space (which can increase vote sparsity), depth is used to modify the resulting placement and strength of votes in the original 2-D Hough space. We compare the effect of these depth-based extensions to the unmodified CSHF detection framework evaluated against a challenging new real- world dataset of urban street scenes.","PeriodicalId":231632,"journal":{"name":"2013 International Conference on Digital Image Computing: Techniques and Applications (DICTA)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Using Depth to Extend Randomised Hough Forests for Object Detection and Localisation\",\"authors\":\"R. Palmer, G. West, T. Tan\",\"doi\":\"10.1109/DICTA.2013.6691536\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Implicit Shape Models (ISM) have been developed for object detection and localisation in 2-D (RGB) imagery and, to a lesser extent, full 3-D point clouds. Research is ongoing to extend the approach to 2-D imagery having co-registered depth (RGB- D) e.g. from stereoscopy, laser scanning, time-of-flight cameras etc.A popular implementation of the ISM is as a Randomised Forest of classifier trees representing codebooks for use in a Hough Transform voting framework. We present three extensions to the Class-Specific Hough Forest (CSHF) that utilises RGB and co- registered depth imagery acquired via stereoscopic mobile imaging. We demonstrate how depth and RGB information can be combined during training and at detection time. Rather than encoding depth as a new dimension of Hough space (which can increase vote sparsity), depth is used to modify the resulting placement and strength of votes in the original 2-D Hough space. We compare the effect of these depth-based extensions to the unmodified CSHF detection framework evaluated against a challenging new real- world dataset of urban street scenes.\",\"PeriodicalId\":231632,\"journal\":{\"name\":\"2013 International Conference on Digital Image Computing: Techniques and Applications (DICTA)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Conference on Digital Image Computing: Techniques and Applications (DICTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DICTA.2013.6691536\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Digital Image Computing: Techniques and Applications (DICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA.2013.6691536","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

隐式形状模型(ISM)已被开发用于二维(RGB)图像中的目标检测和定位,在较小程度上,也可用于全三维点云。正在进行的研究是将该方法扩展到具有共同注册深度(RGB- D)的二维图像,例如来自立体,激光扫描,飞行时间相机等。ISM的一种流行实现是作为表示码本的随机化分类器树森林,用于霍夫变换投票框架。我们提出了三个扩展类特定霍夫森林(CSHF),利用RGB和通过立体移动成像获得的共同注册深度图像。我们演示了如何在训练和检测时将深度和RGB信息结合起来。不是将深度编码为霍夫空间的新维度(这会增加投票的稀疏性),而是使用深度来修改原始二维霍夫空间中选票的位置和强度。我们将这些基于深度的扩展与未经修改的CSHF检测框架的效果进行了比较,该框架是针对具有挑战性的新的真实世界城市街道场景数据集进行评估的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using Depth to Extend Randomised Hough Forests for Object Detection and Localisation
Implicit Shape Models (ISM) have been developed for object detection and localisation in 2-D (RGB) imagery and, to a lesser extent, full 3-D point clouds. Research is ongoing to extend the approach to 2-D imagery having co-registered depth (RGB- D) e.g. from stereoscopy, laser scanning, time-of-flight cameras etc.A popular implementation of the ISM is as a Randomised Forest of classifier trees representing codebooks for use in a Hough Transform voting framework. We present three extensions to the Class-Specific Hough Forest (CSHF) that utilises RGB and co- registered depth imagery acquired via stereoscopic mobile imaging. We demonstrate how depth and RGB information can be combined during training and at detection time. Rather than encoding depth as a new dimension of Hough space (which can increase vote sparsity), depth is used to modify the resulting placement and strength of votes in the original 2-D Hough space. We compare the effect of these depth-based extensions to the unmodified CSHF detection framework evaluated against a challenging new real- world dataset of urban street scenes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信