基于边缘计算和神经网络的气象数据分析与预测

Jianxin Wang, Geng Li
{"title":"基于边缘计算和神经网络的气象数据分析与预测","authors":"Jianxin Wang, Geng Li","doi":"10.4018/ijdst.291081","DOIUrl":null,"url":null,"abstract":"In this work, aiming at the problem of missing element values in real-time meteorological data, we propose a radial basis function (RBF) neural network model based on rough set to optimize the analysis and prediction of meteorological data. In this model, the relative humidity of a single station is taken as an example, and the meteorological influencing factors are reduced by rough set theory. The key factors are used as the input of RBF neural network to interpolate the missing data. The experimental results show that the interpolation effect of the model is significantly higher than that of the linear interpolation method, which provides an effective processing method for the lack of real-time meteorological data, and improves the analysis and prediction effect of meteorological data.","PeriodicalId":118536,"journal":{"name":"Int. J. Distributed Syst. Technol.","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis and Prediction of Meteorological Data Based on Edge Computing and Neural Network\",\"authors\":\"Jianxin Wang, Geng Li\",\"doi\":\"10.4018/ijdst.291081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, aiming at the problem of missing element values in real-time meteorological data, we propose a radial basis function (RBF) neural network model based on rough set to optimize the analysis and prediction of meteorological data. In this model, the relative humidity of a single station is taken as an example, and the meteorological influencing factors are reduced by rough set theory. The key factors are used as the input of RBF neural network to interpolate the missing data. The experimental results show that the interpolation effect of the model is significantly higher than that of the linear interpolation method, which provides an effective processing method for the lack of real-time meteorological data, and improves the analysis and prediction effect of meteorological data.\",\"PeriodicalId\":118536,\"journal\":{\"name\":\"Int. J. Distributed Syst. Technol.\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Distributed Syst. Technol.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijdst.291081\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Distributed Syst. Technol.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijdst.291081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文针对实时气象数据中元素值缺失的问题,提出了一种基于粗糙集的径向基函数(RBF)神经网络模型来优化气象数据的分析与预测。该模型以单站相对湿度为例,利用粗糙集理论对气象影响因素进行约简。将关键因子作为RBF神经网络的输入,对缺失数据进行插值。实验结果表明,该模型的插值效果显著高于线性插值方法,为缺乏实时气象数据提供了一种有效的处理方法,提高了气象数据的分析预测效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis and Prediction of Meteorological Data Based on Edge Computing and Neural Network
In this work, aiming at the problem of missing element values in real-time meteorological data, we propose a radial basis function (RBF) neural network model based on rough set to optimize the analysis and prediction of meteorological data. In this model, the relative humidity of a single station is taken as an example, and the meteorological influencing factors are reduced by rough set theory. The key factors are used as the input of RBF neural network to interpolate the missing data. The experimental results show that the interpolation effect of the model is significantly higher than that of the linear interpolation method, which provides an effective processing method for the lack of real-time meteorological data, and improves the analysis and prediction effect of meteorological data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信