超像素分割的快速图算法

D. Floros, Tiancheng Liu, N. Pitsianis, Xiaobai Sun
{"title":"超像素分割的快速图算法","authors":"D. Floros, Tiancheng Liu, N. Pitsianis, Xiaobai Sun","doi":"10.1109/HPEC55821.2022.9926359","DOIUrl":null,"url":null,"abstract":"We introduce the novel graph-based algorithm SLAM (simultaneous local assortative mixing) for fast and high-quality superpixel segmentation of any large color image. Super-pixels are compact semantic image elements; superpixel segmen-tation is fundamental to a broad range of vision tasks in existing and emerging applications, especially, to safety-critical and time-critical applications. SLAM leverages a graph representation of the image, which encodes the pixel features and similarities, for its rich potential in implicit feature transformation and extra means for feature differentiation and association at multiple resolution scales. We demonstrate, with our experimental results on 500 benchmark images, that SLAM outperforms the state-of-art algorithms in superpixel quality, by multiple measures, within the same time frame. The contributions are at least two-fold: SLAM breaks down the long-standing speed barriers in graph-based algorithms for superpixel segmentation; it lifts the fundamental limitations in the feature-point-based algorithms.","PeriodicalId":200071,"journal":{"name":"2022 IEEE High Performance Extreme Computing Conference (HPEC)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Fast Graph Algorithms for Superpixel Segmentation\",\"authors\":\"D. Floros, Tiancheng Liu, N. Pitsianis, Xiaobai Sun\",\"doi\":\"10.1109/HPEC55821.2022.9926359\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce the novel graph-based algorithm SLAM (simultaneous local assortative mixing) for fast and high-quality superpixel segmentation of any large color image. Super-pixels are compact semantic image elements; superpixel segmen-tation is fundamental to a broad range of vision tasks in existing and emerging applications, especially, to safety-critical and time-critical applications. SLAM leverages a graph representation of the image, which encodes the pixel features and similarities, for its rich potential in implicit feature transformation and extra means for feature differentiation and association at multiple resolution scales. We demonstrate, with our experimental results on 500 benchmark images, that SLAM outperforms the state-of-art algorithms in superpixel quality, by multiple measures, within the same time frame. The contributions are at least two-fold: SLAM breaks down the long-standing speed barriers in graph-based algorithms for superpixel segmentation; it lifts the fundamental limitations in the feature-point-based algorithms.\",\"PeriodicalId\":200071,\"journal\":{\"name\":\"2022 IEEE High Performance Extreme Computing Conference (HPEC)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE High Performance Extreme Computing Conference (HPEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HPEC55821.2022.9926359\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE High Performance Extreme Computing Conference (HPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPEC55821.2022.9926359","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们介绍了一种新的基于图的算法SLAM(同步局部分类混合),用于任何大型彩色图像的快速和高质量的超像素分割。超像素是紧凑的语义图像元素;超像素分割是现有和新兴应用中广泛的视觉任务的基础,特别是对于安全关键和时间关键应用。SLAM利用图像的图形表示,对像素特征和相似度进行编码,因为它在隐式特征转换方面具有丰富的潜力,并且在多分辨率尺度上具有特征区分和关联的额外手段。我们通过500张基准图像的实验结果证明,SLAM在同一时间框架内通过多种措施,在超像素质量方面优于最先进的算法。其贡献至少有两方面:SLAM打破了长期以来基于图的超像素分割算法的速度障碍;它解除了基于特征点的算法的基本限制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast Graph Algorithms for Superpixel Segmentation
We introduce the novel graph-based algorithm SLAM (simultaneous local assortative mixing) for fast and high-quality superpixel segmentation of any large color image. Super-pixels are compact semantic image elements; superpixel segmen-tation is fundamental to a broad range of vision tasks in existing and emerging applications, especially, to safety-critical and time-critical applications. SLAM leverages a graph representation of the image, which encodes the pixel features and similarities, for its rich potential in implicit feature transformation and extra means for feature differentiation and association at multiple resolution scales. We demonstrate, with our experimental results on 500 benchmark images, that SLAM outperforms the state-of-art algorithms in superpixel quality, by multiple measures, within the same time frame. The contributions are at least two-fold: SLAM breaks down the long-standing speed barriers in graph-based algorithms for superpixel segmentation; it lifts the fundamental limitations in the feature-point-based algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信