基于多臂强盗算法的无线电力传输策略优化

Yuan Xing, Riley Young, Giaolong Nguyen, Maxwell Lefebvre, Tianchi Zhao, Haowen Pan
{"title":"基于多臂强盗算法的无线电力传输策略优化","authors":"Yuan Xing, Riley Young, Giaolong Nguyen, Maxwell Lefebvre, Tianchi Zhao, Haowen Pan","doi":"10.1109/iemcon53756.2021.9623190","DOIUrl":null,"url":null,"abstract":"This paper aims to solve the optimization problems in far-field wireless power transfer systems using machine learning techniques. We assembled the RF power transfer robot, which can emit the electromagnetic wave to charge the energy harvesters that are deployed in the experimental field. The wireless transmitter intends to charge all the energy harvesters in a fair manner. Since the energy harvesters can be either stationary or mobile, a multi-armed bandit(MAB) problem is formulated and we use Upper Confidence Bound(UCB) algorithm to determine the optimal transmission strategy. As the number of the transmitters is increased, multiple wireless transmitters coordinate with each other to boost the levels of energy harvesting at all energy harvesters. Correspondingly, we formulate a combinational MAB problem and UCB algorithm is applied to determine the optimal transmission strategy for each transmitter. The simulation results prove the superiority of the Multi-armed bandit approach in solving the proposed optimization problems.","PeriodicalId":272590,"journal":{"name":"2021 IEEE 12th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of Transmission Strategy for Wireless Power Transfer Using Multi-Armed Bandit Algorithm\",\"authors\":\"Yuan Xing, Riley Young, Giaolong Nguyen, Maxwell Lefebvre, Tianchi Zhao, Haowen Pan\",\"doi\":\"10.1109/iemcon53756.2021.9623190\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper aims to solve the optimization problems in far-field wireless power transfer systems using machine learning techniques. We assembled the RF power transfer robot, which can emit the electromagnetic wave to charge the energy harvesters that are deployed in the experimental field. The wireless transmitter intends to charge all the energy harvesters in a fair manner. Since the energy harvesters can be either stationary or mobile, a multi-armed bandit(MAB) problem is formulated and we use Upper Confidence Bound(UCB) algorithm to determine the optimal transmission strategy. As the number of the transmitters is increased, multiple wireless transmitters coordinate with each other to boost the levels of energy harvesting at all energy harvesters. Correspondingly, we formulate a combinational MAB problem and UCB algorithm is applied to determine the optimal transmission strategy for each transmitter. The simulation results prove the superiority of the Multi-armed bandit approach in solving the proposed optimization problems.\",\"PeriodicalId\":272590,\"journal\":{\"name\":\"2021 IEEE 12th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 12th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/iemcon53756.2021.9623190\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 12th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iemcon53756.2021.9623190","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文旨在利用机器学习技术解决远场无线电力传输系统中的优化问题。我们组装了射频能量传输机器人,它可以发射电磁波给部署在实验场的能量采集器充电。无线发射器打算以公平的方式给所有的能量收集器充电。由于能量采集器可以是固定的,也可以是移动的,因此我们建立了一个多臂土匪(MAB)问题,并使用上置信度界(UCB)算法来确定最优传输策略。随着发射器数量的增加,多个无线发射器相互协调,以提高所有能量收集器的能量收集水平。相应地,我们提出了一个组合MAB问题,并应用UCB算法确定每个发射机的最优传输策略。仿真结果证明了多臂强盗方法在解决所提出的优化问题方面的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimization of Transmission Strategy for Wireless Power Transfer Using Multi-Armed Bandit Algorithm
This paper aims to solve the optimization problems in far-field wireless power transfer systems using machine learning techniques. We assembled the RF power transfer robot, which can emit the electromagnetic wave to charge the energy harvesters that are deployed in the experimental field. The wireless transmitter intends to charge all the energy harvesters in a fair manner. Since the energy harvesters can be either stationary or mobile, a multi-armed bandit(MAB) problem is formulated and we use Upper Confidence Bound(UCB) algorithm to determine the optimal transmission strategy. As the number of the transmitters is increased, multiple wireless transmitters coordinate with each other to boost the levels of energy harvesting at all energy harvesters. Correspondingly, we formulate a combinational MAB problem and UCB algorithm is applied to determine the optimal transmission strategy for each transmitter. The simulation results prove the superiority of the Multi-armed bandit approach in solving the proposed optimization problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信