流量分析与在线网络数据

Yisheng Lv, Yuan-yuan Chen, Xueliang Zhao, Hao Lu
{"title":"流量分析与在线网络数据","authors":"Yisheng Lv, Yuan-yuan Chen, Xueliang Zhao, Hao Lu","doi":"10.1049/pbtr026e_ch2","DOIUrl":null,"url":null,"abstract":"Social media and other online websites have rich traffic information. How to extract and mine useful traffic information from online web data to address transportation problems has become a valuable and interesting research topic in current data-explosive era. In this chapter, we introduce a traffic analytic system with online web data. The proposed system can collect online data, use machine learning and natural language processing methods to extract traffic events, analyze traffic sentiment, and reason traffic scenarios. We also present some results based on the proposed system and techniques in practice.","PeriodicalId":218837,"journal":{"name":"Traffic Information and Control","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Traffic analytics with online web data\",\"authors\":\"Yisheng Lv, Yuan-yuan Chen, Xueliang Zhao, Hao Lu\",\"doi\":\"10.1049/pbtr026e_ch2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Social media and other online websites have rich traffic information. How to extract and mine useful traffic information from online web data to address transportation problems has become a valuable and interesting research topic in current data-explosive era. In this chapter, we introduce a traffic analytic system with online web data. The proposed system can collect online data, use machine learning and natural language processing methods to extract traffic events, analyze traffic sentiment, and reason traffic scenarios. We also present some results based on the proposed system and techniques in practice.\",\"PeriodicalId\":218837,\"journal\":{\"name\":\"Traffic Information and Control\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Traffic Information and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1049/pbtr026e_ch2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Traffic Information and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/pbtr026e_ch2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

社交媒体和其他在线网站拥有丰富的流量信息。如何从在线网络数据中提取和挖掘有用的交通信息来解决交通问题,已成为当前数据爆炸时代一个有价值和有趣的研究课题。在本章中,我们介绍了一个基于网络数据的流量分析系统。该系统可以收集在线数据,使用机器学习和自然语言处理方法提取交通事件,分析交通情绪,并对交通场景进行推理。我们还介绍了基于所提出的系统和技术在实践中的一些结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Traffic analytics with online web data
Social media and other online websites have rich traffic information. How to extract and mine useful traffic information from online web data to address transportation problems has become a valuable and interesting research topic in current data-explosive era. In this chapter, we introduce a traffic analytic system with online web data. The proposed system can collect online data, use machine learning and natural language processing methods to extract traffic events, analyze traffic sentiment, and reason traffic scenarios. We also present some results based on the proposed system and techniques in practice.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信