基于Minkowski加法的凸多边形反射对称测度的高效计算

A. Tuzikov, G. Margolin, H. Heijmans
{"title":"基于Minkowski加法的凸多边形反射对称测度的高效计算","authors":"A. Tuzikov, G. Margolin, H. Heijmans","doi":"10.1109/ICPR.1996.546824","DOIUrl":null,"url":null,"abstract":"This paper introduces a reflection symmetry measure for convex polygons based on Minkowski addition. An interesting property of this measure is that it can be computed in O(k/sup 3/) time, where k is the number of edges of the polygon. The proposed algorithm as well as the symmetry measure computation uses the perimetric measure representation of convex polygons.","PeriodicalId":290297,"journal":{"name":"Proceedings of 13th International Conference on Pattern Recognition","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Efficient computation of a reflection symmetry measure for convex polygons based on Minkowski addition\",\"authors\":\"A. Tuzikov, G. Margolin, H. Heijmans\",\"doi\":\"10.1109/ICPR.1996.546824\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a reflection symmetry measure for convex polygons based on Minkowski addition. An interesting property of this measure is that it can be computed in O(k/sup 3/) time, where k is the number of edges of the polygon. The proposed algorithm as well as the symmetry measure computation uses the perimetric measure representation of convex polygons.\",\"PeriodicalId\":290297,\"journal\":{\"name\":\"Proceedings of 13th International Conference on Pattern Recognition\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 13th International Conference on Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPR.1996.546824\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 13th International Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.1996.546824","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

介绍了一种基于闵可夫斯基加法的凸多边形反射对称测度。这个度量的一个有趣的性质是,它可以在O(k/sup 3/)时间内计算出来,其中k是多边形的边数。该算法和对称测度计算都采用凸多边形的周长测度表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient computation of a reflection symmetry measure for convex polygons based on Minkowski addition
This paper introduces a reflection symmetry measure for convex polygons based on Minkowski addition. An interesting property of this measure is that it can be computed in O(k/sup 3/) time, where k is the number of edges of the polygon. The proposed algorithm as well as the symmetry measure computation uses the perimetric measure representation of convex polygons.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信