{"title":"具有状态信息的位置感知高效多播协议","authors":"P. Shrividhya","doi":"10.1109/ICECTECH.2011.5941857","DOIUrl":null,"url":null,"abstract":"Several multicast protocols for mobile ad hoc networks have been proposed, which build multicast trees by using location information that is available from the Global Positioning System (GPS) or localization algorithms and use geographic forwarding to forward packets down the multicast trees. These stateless multicast protocols carry encoded membership, location, and tree information in each packet and are more efficient and robust than stateful protocols (for example, ADMR and ODMRP), as they avoid the difficulty of maintaining distributed state in the presence of frequent topology changes. However, current stateless multicast protocols are not scalable to large groups because of the per-packet encoding overhead, and the centralized group membership and location management. In this paper I propose a novel Robust and Scalable Geographic Multicast Protocol (RSGM). Several virtual architectures are used in the protocol without need of maintaining state information for more robust and scalable membership management and packet forwarding in the presence of high network dynamics due to unstable wireless channels and node movements. Specifically, scalable and efficient group membership management is performed through a virtual-zone-based structure, and the location service for group members is integrated with the membership management. Both the control messages and data packets are forwarded along efficient tree-like paths, but there is no need to explicitly create and actively maintain a tree structure. The stateless virtual-tree-based structures significantly reduce the tree management overhead, support more efficient transmissions, and make the transmissions much more robust to dynamics. Geographic forwarding is used to achieve further scalability and robustness. To avoid periodic flooding of the source information throughout the network, an efficient source tracking mechanism is designed to focus on minimizing join latency, repair latency, and control overhead. I have design a routing protocol based on these principles and demonstrate its effectiveness through simulations.","PeriodicalId":184011,"journal":{"name":"2011 3rd International Conference on Electronics Computer Technology","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Location aware efficient multicasting protocol with state information\",\"authors\":\"P. Shrividhya\",\"doi\":\"10.1109/ICECTECH.2011.5941857\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Several multicast protocols for mobile ad hoc networks have been proposed, which build multicast trees by using location information that is available from the Global Positioning System (GPS) or localization algorithms and use geographic forwarding to forward packets down the multicast trees. These stateless multicast protocols carry encoded membership, location, and tree information in each packet and are more efficient and robust than stateful protocols (for example, ADMR and ODMRP), as they avoid the difficulty of maintaining distributed state in the presence of frequent topology changes. However, current stateless multicast protocols are not scalable to large groups because of the per-packet encoding overhead, and the centralized group membership and location management. In this paper I propose a novel Robust and Scalable Geographic Multicast Protocol (RSGM). Several virtual architectures are used in the protocol without need of maintaining state information for more robust and scalable membership management and packet forwarding in the presence of high network dynamics due to unstable wireless channels and node movements. Specifically, scalable and efficient group membership management is performed through a virtual-zone-based structure, and the location service for group members is integrated with the membership management. Both the control messages and data packets are forwarded along efficient tree-like paths, but there is no need to explicitly create and actively maintain a tree structure. The stateless virtual-tree-based structures significantly reduce the tree management overhead, support more efficient transmissions, and make the transmissions much more robust to dynamics. Geographic forwarding is used to achieve further scalability and robustness. To avoid periodic flooding of the source information throughout the network, an efficient source tracking mechanism is designed to focus on minimizing join latency, repair latency, and control overhead. I have design a routing protocol based on these principles and demonstrate its effectiveness through simulations.\",\"PeriodicalId\":184011,\"journal\":{\"name\":\"2011 3rd International Conference on Electronics Computer Technology\",\"volume\":\"66 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 3rd International Conference on Electronics Computer Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICECTECH.2011.5941857\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 3rd International Conference on Electronics Computer Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECTECH.2011.5941857","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Location aware efficient multicasting protocol with state information
Several multicast protocols for mobile ad hoc networks have been proposed, which build multicast trees by using location information that is available from the Global Positioning System (GPS) or localization algorithms and use geographic forwarding to forward packets down the multicast trees. These stateless multicast protocols carry encoded membership, location, and tree information in each packet and are more efficient and robust than stateful protocols (for example, ADMR and ODMRP), as they avoid the difficulty of maintaining distributed state in the presence of frequent topology changes. However, current stateless multicast protocols are not scalable to large groups because of the per-packet encoding overhead, and the centralized group membership and location management. In this paper I propose a novel Robust and Scalable Geographic Multicast Protocol (RSGM). Several virtual architectures are used in the protocol without need of maintaining state information for more robust and scalable membership management and packet forwarding in the presence of high network dynamics due to unstable wireless channels and node movements. Specifically, scalable and efficient group membership management is performed through a virtual-zone-based structure, and the location service for group members is integrated with the membership management. Both the control messages and data packets are forwarded along efficient tree-like paths, but there is no need to explicitly create and actively maintain a tree structure. The stateless virtual-tree-based structures significantly reduce the tree management overhead, support more efficient transmissions, and make the transmissions much more robust to dynamics. Geographic forwarding is used to achieve further scalability and robustness. To avoid periodic flooding of the source information throughout the network, an efficient source tracking mechanism is designed to focus on minimizing join latency, repair latency, and control overhead. I have design a routing protocol based on these principles and demonstrate its effectiveness through simulations.