Toeplitz矩阵逼近问题的半定二阶锥优化方法

S. Al-Homidan
{"title":"Toeplitz矩阵逼近问题的半定二阶锥优化方法","authors":"S. Al-Homidan","doi":"10.1515/156939506776382148","DOIUrl":null,"url":null,"abstract":"The nearest positive semidefinite symmetric Toeplitz matrix to an arbitrary data covariance matrix is useful in many areas of engineering, including stochastic filtering and digital signal processing applications. In this paper, the interior point primal-dual path-following method will be used to solve our problem after reformulating it into different forms, first as a semidefinite programming problem, then into the form of a mixed semidefinite and second-order cone optimization problem. Numerical results, comparing the performance of these methods against the modified alternating projection method will be reported.","PeriodicalId":342521,"journal":{"name":"J. Num. Math.","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Semidefinite and second-order cone optimization approach for the Toeplitz matrix approximation problem\",\"authors\":\"S. Al-Homidan\",\"doi\":\"10.1515/156939506776382148\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The nearest positive semidefinite symmetric Toeplitz matrix to an arbitrary data covariance matrix is useful in many areas of engineering, including stochastic filtering and digital signal processing applications. In this paper, the interior point primal-dual path-following method will be used to solve our problem after reformulating it into different forms, first as a semidefinite programming problem, then into the form of a mixed semidefinite and second-order cone optimization problem. Numerical results, comparing the performance of these methods against the modified alternating projection method will be reported.\",\"PeriodicalId\":342521,\"journal\":{\"name\":\"J. Num. Math.\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Num. Math.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/156939506776382148\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Num. Math.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/156939506776382148","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

最接近于任意数据协方差矩阵的正半定对称Toeplitz矩阵在许多工程领域都很有用,包括随机滤波和数字信号处理应用。本文将利用内点原对偶路径跟踪方法,将问题转化为半定规划问题,再转化为半定和二阶锥优化问题的混合形式。数值结果,比较这些方法的性能与改进交替投影法将报告。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Semidefinite and second-order cone optimization approach for the Toeplitz matrix approximation problem
The nearest positive semidefinite symmetric Toeplitz matrix to an arbitrary data covariance matrix is useful in many areas of engineering, including stochastic filtering and digital signal processing applications. In this paper, the interior point primal-dual path-following method will be used to solve our problem after reformulating it into different forms, first as a semidefinite programming problem, then into the form of a mixed semidefinite and second-order cone optimization problem. Numerical results, comparing the performance of these methods against the modified alternating projection method will be reported.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信