最优CDMA信号:有限步方法

J. Tropp, I. Dhillon, R. Heath
{"title":"最优CDMA信号:有限步方法","authors":"J. Tropp, I. Dhillon, R. Heath","doi":"10.1109/ISSSTA.2004.1371717","DOIUrl":null,"url":null,"abstract":"A description of optimal sequences for direct-sequence code division multiple access is a byproduct of recent characterizations of the sum capacity. The paper restates the sequence design problem as an inverse singular value problem and shows that it can be solved with finite-step algorithms from matrix analysis. Relevant algorithms are reviewed and a new one-sided construction is proposed that obtains the sequences directly instead of computing the Gram matrix of the optimal signatures.","PeriodicalId":340769,"journal":{"name":"Eighth IEEE International Symposium on Spread Spectrum Techniques and Applications - Programme and Book of Abstracts (IEEE Cat. No.04TH8738)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Optimal CDMA signatures: a finite-step approach\",\"authors\":\"J. Tropp, I. Dhillon, R. Heath\",\"doi\":\"10.1109/ISSSTA.2004.1371717\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A description of optimal sequences for direct-sequence code division multiple access is a byproduct of recent characterizations of the sum capacity. The paper restates the sequence design problem as an inverse singular value problem and shows that it can be solved with finite-step algorithms from matrix analysis. Relevant algorithms are reviewed and a new one-sided construction is proposed that obtains the sequences directly instead of computing the Gram matrix of the optimal signatures.\",\"PeriodicalId\":340769,\"journal\":{\"name\":\"Eighth IEEE International Symposium on Spread Spectrum Techniques and Applications - Programme and Book of Abstracts (IEEE Cat. No.04TH8738)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Eighth IEEE International Symposium on Spread Spectrum Techniques and Applications - Programme and Book of Abstracts (IEEE Cat. No.04TH8738)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSSTA.2004.1371717\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eighth IEEE International Symposium on Spread Spectrum Techniques and Applications - Programme and Book of Abstracts (IEEE Cat. No.04TH8738)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSSTA.2004.1371717","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

对直接序列码分多址的最优序列的描述是最近对总和容量的描述的副产品。本文将序列设计问题重新表述为一个逆奇异值问题,并从矩阵分析出发,用有限步算法对其进行求解。在回顾了相关算法的基础上,提出了一种新的单侧构造方法,该方法不需要计算最优签名的Gram矩阵,而是直接得到序列。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal CDMA signatures: a finite-step approach
A description of optimal sequences for direct-sequence code division multiple access is a byproduct of recent characterizations of the sum capacity. The paper restates the sequence design problem as an inverse singular value problem and shows that it can be solved with finite-step algorithms from matrix analysis. Relevant algorithms are reviewed and a new one-sided construction is proposed that obtains the sequences directly instead of computing the Gram matrix of the optimal signatures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信